• Title/Summary/Keyword: Driving Data

Search Result 2,020, Processing Time 0.033 seconds

Independent Object based Situation Awareness for Autonomous Driving in On-Road Environment (도로 환경에서 자율주행을 위한 독립 관찰자 기반 주행 상황 인지 방법)

  • Noh, Samyeul;Han, Woo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.87-94
    • /
    • 2015
  • This paper proposes a situation awareness method based on data fusion and independent objects for autonomous driving in on-road environment. The proposed method, designed to achieve an accurate analysis of driving situations in on-road environment, executes preprocessing tasks that include coordinate transformations, data filtering, and data fusion and independent object based situation assessment to evaluate the collision risks of driving situations and calculate a desired velocity. The method was implemented in an open-source robot operating system called ROS and tested on a closed road with other vehicles. It performed successfully in several scenarios similar to a real road environment.

Real-Time Safety Driving Assistance System Based on a Smartphone

  • Kang, Joon-Gyu;Kim, Yoo-Won;Jun, Moon-Seog
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.8
    • /
    • pp.33-39
    • /
    • 2017
  • In this paper, we propose a method which implements warning to drivers through real-time analysis of risky and unexpected driver and vehicle behavior using only a smartphone without using data from digital tachograph and vehicle internal sensors. We performed the evaluation of our system that demonstrates the effectiveness and usefulness of our method for risky and unexpected driver and vehicle behavior using three information such as vehicle speed, azimuth and GPS data which are acquired from a smartphone sensors. We confirmed the results and developed the smartphone application for validate and conducted simulation using actual driving data. This novel functionality of the smartphone application enhances drivers' situational awareness, increasing safety and effectiveness of driving.

Human Driving Data Based Simulation Tool to Develop and Evaluate Automated Driving Systems' Lane Change Algorithm in Urban Congested Traffic (도심 정체 상황에서의 자율주행 차선 변경 알고리즘 개발 및 평가를 위한 실도로 데이터 기반 시뮬레이션 환경 개발)

  • Dabin Seo;Heungseok Chae;Kyongsu Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.2
    • /
    • pp.21-27
    • /
    • 2023
  • This paper presents a simulation tool for developing and evaluating automated driving systems' lane change algorithm in urban congested traffic. The behavior of surrounding vehicles was modeled based on driver driving data measured in urban congested traffic. Surrounding vehicles are divided into aggressive vehicles and non-aggressive vehicles. The degree of aggressiveness is determined according to the lateral position to initiate interaction with the vehicle in the next lane. In addition, the desired velocity and desired time gap of each vehicle are all randomly assigned. The simulation was conducted by reflecting the cognitive limitations and control performance of the autonomous vehicle. It was possible to confirm the change in the lane change performance according to the variation of the lane change decision algorithm.

Development of Urban Driving Cycle for Performance Evaluation of Electric Vehicles Part II: Verification of Driving Cycle (전기자동차 성능평가를 위한 도심 주행 모드 개발 Part II: 주행 모드 검증)

  • Jeong, Nak-Tak;Yang, Seong-Mo;Kim, Kwang-Seup;Choi, Su-Bin;Wang, Maosen;You, Sehoon;Kim, Hyunsoo;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.161-168
    • /
    • 2015
  • Recently, due to various environmental problems such as global warming, increases of international oil prices, exhaustion of resource, a paradigm of world automobile market is rapidly changing from conventional vehicles using internal combustion engine to eco-friendly vehicles using electric power such as EV, HEV, PHEV and FCEV. Generally, in order to measure fuel consumption and pollutant emissions of cars, chassis dynamometer tests are performed on various driving cycles before actual driving test. There are many driving cycles for performance evaluation of conventional vehicles. However, there is a lack of researches on driving cycle for EV. In this study, the urban driving cycle for performance evaluation of electric vehicles was developed. This study is composed of two parts. In the part 1, the urban driving cycle 'GUDC-EV(Gwacheon-city Urban Driving Cycle for Electric Vehicles)' was developed by using driving data, which were obtained through actual driving experiment, and statistic analysis with chronological table. In this paper part 2, in order to verify the developed driving cycle GUDC-EV, virtual EV platforms were configured and simulations were performed with actual driving data using In addition, simulation results were compared with existing driving cycles such as FTP-72, NEDC and Japan 10-15.

A Study on the Optimal Driving by Analysis on EMU Running Result and Simulation (전동열차 주행결과와 시뮬레이션 분석을 통한 최적주행 연구)

  • Kim, Chi-Tae;Kim, Dong-Hwan;Han, Seong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.3
    • /
    • pp.129-133
    • /
    • 2012
  • As people are getting concerned to Environment recently, researches on the environmentally-friendly and effective railway system have been conducted in every aspects. Especially as it became known that the pattern of train driving causes the difference in energy consumption, the researches on the train driving to minimize the energy consumption are gaining a lot of interest. The main study showed the optimal driving to minimize energy consumption while driving after analyzing real driving data measured by EMU of Bundang-line real driving, determining the impact on energy consumption due to train driving pattern changes, executing a variety of simulation on real driving patterns by Matlab Simulink and finally driving between stations by given driving times.

Development of Urban Driving Cycle for Performance Evaluation of Electric Vehicles Part I : Development of Driving Cycle (전기 자동차 성능 평가를 위한 도심 주행 모드 개발 Part I : 주행 모드 개발)

  • Yang, Seong-Mo;Jeong, Nak-Tak;Kim, Kwang-Seup;Choi, Su-Bin;Wang, Maosen;Kim, Hyun-Soo;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.117-126
    • /
    • 2014
  • Recently, due to various environmental problems such as global warming, increasing of international oil prices and exhaustion of resource, a paradigm of world automobile market is rapidly changing from vehicles using internal combustion engine to eco-friendly vehicles using electric power such as EV (Electric Vehicle), HEV (Hybrid Electric Vehicle), PHEV (Plug-in Hybrid electric Vehicle) and FCEV (Fuel Cell Electric Vehicle). There are many driving cycles for performance evaluation of conventional vehicles. However there is a lack of researches on driving cycle for EV. This study is composed of part 1 and part 2. In this paper part 1, in order to develop urban driving cycle for performance evaluation of electric vehicles, Gwacheon-city patrol route of police patrol car was selected. Actual driving test was performed using EV. The driving data such as velocity, time, GPS information etc. were recorded. GUDC-EV (Gwacheon-city Urban Driving Cycle for Electric Vehicles) including road gradient was developed through the results of analyzing recorded data. Reliability of the driving cycle development method was substantiated through comparison of electricity performance. In the second part of this study, the developed driving cycle was compared to simulation result of the existing urban driving cycle. Verification of the developed driving cycle for EV performance evaluation was described.

A Vehicle Stop-and-Go Control Strategy based on Human Drivers Driving Characteristics

  • Yi Kyongsu;Han Donghoon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.993-1000
    • /
    • 2005
  • A vehicle cruise control strategy designed based on human drivers driving characteristics has been investigated. Human drivers driving patterns have been investigated using vehicle driving test data obtained from 125 participants. The control algorithm has been designed to incorporate the driving characteristics of the human drivers and to achieve natural vehicle behavior of the controlled vehicle that would feel comfortable to the human driver. Vehicle following charac­teristics of the cruise controlled vehicle have been investigated using real-world vehicle driving test data and a validated simulation package.

A Novel Driving Method for Cost Competitive a-Si TFT-LCD

  • Moon, Su-Hwan;Lim, Hong-Youl;Kim, Dae-Kyu;Lee, Min-Kyung;Ko, Kyung-Tai;Lee, Jun-Ho;Yoon, Sung-Hoe;Kim, Byeong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.470-473
    • /
    • 2009
  • We have developed a novel driving method, Six times Rate Driving(SRD) for the purpose of making cost competitive TFT-LCD. By applying SRD method to an a-Si TFT-LCD, the driving rate was increased six times as it was named but the number of data lines and so its D-Ics were reduced to one sixth of the conventional one which resulted in the cost saving of that much. We also newly designed the gate driver in order to avoid any expansion of the bezel width caused by applying SRD. Our newly developed driving technology, SRD was successfully applied to 7.0-inch WSVGA (1024 ${\times}$ 600) TFT-LCD which can be driven with only one data D-IC and here introduced.

  • PDF

Driving Stress Monitoring System Based on Information Provided by On-Board Diagnostics Version II (OBD-II 정보를 이용한 운전자 스트레스 모니터링 시스템)

  • Sang-Jin Cho;Young Cho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.29-38
    • /
    • 2023
  • Although the biosignal is the best way to represent the human condition, it is difficult to acquire the biosignal of a driver driving for detecting driver's condition. As one of the methods to overcome this limitation, this paper proposes a driving stress monitoring system based on information provided by OBD-II(on-board diagnostics version II). The driving information and EDA(Electrodermal activity) data are obtained through the OBD-II scanner and E4 wristband, respectively. EDA data is used as ground truth to distinguish whether driver is stressed or not. MLP(multi-layer perceptron) neural network is used as a model to detect driving stress and is trained using driving data for about a month. To evaluate the proposed system, we used about 1 hour of driving data and the accuracy is 92%.

Traffic Accident Type Classification and Characteristic Analysis Research to Develop Autonomous Vehicle Accident Investigation Guidelines Using the National Forensic Service Data Base (국과수 데이터베이스를 활용하여 자율주행차 사고조사 가이드라인 개발을 위한 교통사고 유형 분류 및 특성 분석 연구)

  • Byungdeok In;Dayoung Park;Jongjin Park
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.1
    • /
    • pp.35-41
    • /
    • 2024
  • In order to verify autonomous driving scenarios and safety, a lot of driving and accident data is needed, so various organizations are conducting classification and analysis of traffic accident types. In this study, it was determined that accident recording devices such as EDR (Event Data Recorder) and DSSAD (Data Storage System for Automated Driving) would become an objective standard for analyzing the causes of autonomous vehicle accidents, and traffic accidents that occurred from 2015 to 2020 were analyzed. Using the database system of IGLAD (Initiative for the Global Harmonization of Accident Data), approximately 360 accident data of EDR-equipped vehicles were classified and their characteristics were analyzed by comparing them with accident types of ADAS (Advanced Driver Assistance System)-equipped vehicles. It will be used to develop autonomous vehicle accident investigation guidelines in the future.