• Title/Summary/Keyword: Driving Cycle

Search Result 296, Processing Time 0.022 seconds

Conceptual Design of Penumatic System Routing for Liquid Rocket Engine (액체로켓엔진의 공압류 라우팅 개념 설계)

  • Kim, Okkoo;Park, Soonyoung;Jung, Eunhwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1112-1114
    • /
    • 2017
  • The liquid rocket engine determines the routing of the component placement and layout by adapted the cycle method, the hardware configuration, the gimbal type on the functional implementation, and so on. In this paper, the conceptual routing of major pneumatic lines such as helium (He) supply pneumatic line for driving, many purge pneumatic line and main ignition line based on the main components installed in the liquid rocket engine was performed.

  • PDF

CoolSiCTM SiC MOSFET Technology, Device and Application

  • Ma, Kwokwai
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.577-595
    • /
    • 2017
  • ${\bullet}$ Silicon Carbide (SiC) had excellent material properties as the base material for next generation of power semiconductor. In developing SiC MOSFET, gate oxide reliability issues had to be first overcome before commercial application. Besides, a high and stable gate-source voltage threshold $V_{GS(th)}$ is also an important parameter for operation robustness. SiC MOSFET with such characteristics can directly use existing high-speed IGBT gate driver IC's. ${\bullet}$ The linear voltage drop characteristics of SiC MOSFET will bring lower conduction loss averaged over full AC cycle compared to similarly rate IGBT. Lower switching loss enable higher switching frequency. Using package with auxiliary source terminal for gate driving will further reduce switching losses. Dynamic characteristics can fully controlled by simple gate resistors. ${\bullet}$ The low switching losses characteristics of SiC MOSFET can substantially reduce power losses in high switching frequency operation. Significant power loss reduction is also possible even at low switching frequency and low switching speed. in T-type 3-level topology, SiC MOSFET solution enable three times higher switching freqeuncy at same efficiency.

  • PDF

EFFICIENCY MEASUREMENT AND ENERGY ANALYSIS FOR A HEV BENCH TESTER AND DEVELOPMENT OF PERFORMANCE SIMULATOR

  • OH K.;KIM D.;KIM T.;KIM C.;KIM H.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.537-544
    • /
    • 2005
  • This paper presents the efficiency measurement and energy analysis for a parallel HEY. Using the HEV test rig, the efficiency of each powertrain component is measured for a given driving cycle including the regenerative braking system. Accompanied by the efficiency measurements, a detailed energy analysis is performed. Based on the efficiency measurement and energy analysis, a HEV performance simulator is developed. Using the simulator, the HEV performance is evaluated for a mild hybrid system. It is expected that the HEV simulator developed can be used to obtain further optimization potentials.

The vehicle's fuel economy and emission characteristics evaluation by fuel type (자동차의 연료별 연비 및 배출가스 특성 평가)

  • Kang, Eunjeong;Seo, Youngho
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.1
    • /
    • pp.9-13
    • /
    • 2014
  • The purpose of this study is analysis to vehicle's fuel economy and emission gas characteristics by fuel type. The test vehicle were selected to similar weight and performance, the test vehicle was used three representative mode(CVS-75, HWFET and NEDC) in order to evaluation fuel economy and emission gas. For reference, environment pollution cost was calculated on the basis of the exhaust emissions occurred in the test in progress.

Numerical Analysis Research for Evaluating the Energy Efficiency of Electric Vehicles (전기자동차 에너지효율 평가를 위한 수치해석 연구)

  • Mingi Choi
    • Journal of ILASS-Korea
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • This paper is a numerical analysis study for evaluating the energy efficiency of electric vehicles. Currently, the methods for testing and evaluating the energy consumption efficiency of electric vehicles have limitations such as resources and time. Therefore, there is a need for research on developing models to predict the energy consumption efficiency of electric vehicles. In this study, a numerical analysis research is conducted to predict the energy efficiency of electric vehicles using a vehicle dynamics numerical analysis model. To validate the accuracy of the simulation model, it is compared the results of dynamometer tests with the simulation results and used the Unified Diagnostic Services (UDS) protocol to acquire internal data from the electric vehicle. It is ensured the reliability of the simulation model by comparing data such as motor speed, battery voltage, current, state of charge (SOC), regenerative braking power generation, and total driving distance of the test vehicle with dynamometer test data and simulation model results.

A Study on the Effects of LPDi System Application in 2.0L Hybrid Vehicles Using Energy Flow Analysis (에너지 흐름 분석을 이용한 2.0L 급 하이브리드 차량에서의 LPDi 시스템 적용 효과 연구)

  • Young kuk An;Bonseok Koo;Jinil Park
    • Journal of ILASS-Korea
    • /
    • v.29 no.1
    • /
    • pp.7-15
    • /
    • 2024
  • This study investigates the performance of 2.0L hybrid vehicles equipped with Liquefied Petroleum Gas (LPG) fuel engines, using energy flow analysis. By incorporating a direct LPG injection system (LPDi), the research aims to overcome the reduced maximum output commonly associated with LPG engines. Moreover, the integration of a hybrid system is explored as a means to enhance vehicle fuel economy while reducing CO2 and emissions. The study employs data from FTP-75 and HWFET driving cycle to inform future research efforts focused on predicting CO2 emissions and fuel economy for Hybrid Electric Vehicles utilizing LPG Direct Injection. The findings offer insights into optimizing fuel systems for better environmental and operational performance in hybrid vehicles.

A study on the evaluation of metal component in automatic transmission fluid by vehicle driving (차량 운행에 따른 자동변속기유(ATF) 금속분 분석평가 연구)

  • Lee, Joung-Min;Lim, Young-Kwan;Doe, Jin-Woo;Jung, Choong-Sub;Han, Kwan-Wook;Na, Byung-Ki
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.28-34
    • /
    • 2014
  • Automatic transmission fluid (ATF) is used for automatic transmissions in the vehicle as the characterized fluid. Recently, the vehicle manufacture usually guarantee for fluid change over 80000~100000 km mileage or no exchange, but most drivers usually change ATF below every 50000 km driving in Republic of Korea. It can cause to raise environmental contamination by used ATF and increase the cost of driving by frequently ATF change. In this study, we investigate the various physical properties such as flash point, fire point, pour point, kinematic viscosity, cold cranking simulator, total acid number, and metal component concentration for fresh and used ATF after driving (50000 km, 100000 km). The result showed that the total acid number, pour point, Fe, Al and Cu component had increased than fresh ATF, but 2 kind of used oil (50000 km and 100000km) had similar physical values and metal component concentration.

A Study on Tuning Effects of Intake Manifold, Intake Pipe and Air Filter upon Performance and Exhaust Emissions of Driving Car (운행자동차 성능 및 배기 배출물에 미치는 흡기 다기관, 흡기 파이프 및 공기필터의 튜닝효과에 관한 연구)

  • Bae, Myung-whan;Ku, Young Jin;Park, Hui-seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.538-548
    • /
    • 2016
  • The purpose of this study is to identify the possibility of effective tuning works, understand the characteristics of tuning engine, and analyse the basic data of engine tuning inspection corresponding to the safe operation and environment of a driving gasoline car. The effects of tuning on the characteristics of performance and exhaust emissions under a wide range of engine speeds are experimentally investigated by the actual driving car with a four-cycle, four-cylinder DOHC, turbo-intercooler, water-cooled gasoline engine operating at four types of non-tuning, tuning 1, 2 and 3. The tuning parts in the gasoline engine are the intake manifold, intake pipe and air filter. In the experiment, the output, torque and air-fuel ratio of the five-speed automatic transmission vehicles were measured at the chassis dynamometer(Dynojet 224xLC) with one person on board. The exhaust emissions of $NO_X$, THC, CO, $O_2$ and $CO_2$, and excess air ratio(${\lambda}$) at the other chassis dynamometer(DASAN-MD-ASM-97-KR-HD) were also measured by the idle/constant-speed mode(ASM2525 mode) test method. It is found that the actual air-fuel ratios of non-tuning and tuning engines were shown to be lower than the stoichiometric air-fuel ratio with increasing engine speed, and the actual air-fuel ratio of non-tuning engine was slightly higher than those of tuning engines when the engine speed is more than 4000 rpm. The output was significantly increased by the tuning whereby the maximum output of tuning engine was more increased to approximately 117.64% than that of non-tuning engine. In addition, CO, THC and $NO_X$ emissions of non-tuning and tuning engines measured by the constant-speed test mode were all satisfied with the inspection standards. CO emission was increased, while THC and $NO_X$ emissions were reduced by tuning.

A Design of Greenhouse Control Algorithm with the Multiple-Phase Processing Scheme (다중 위상 처리구조를 갖는 온실 복합환경제어 알고리즘 설계)

  • Daewook Bang
    • Journal of Service Research and Studies
    • /
    • v.11 no.2
    • /
    • pp.118-130
    • /
    • 2021
  • This study designs and validates a greenhouse complex environmental control algorithm with a multi-phase processing scheme that can combine and control actuators according to the degree of change in the greenhouse environment. The composite environmental control system is a system in which the complex environmental controller analyzes the information detected by sensors and operates appropriately actuators to maintain the crop growth environment. A composite environmental controller directs control devices driving actuators through a composite environmental control algorithm, which calculates the values necessary for the operation of the control devices. Most existing algorithms carry out control procedures on a single phase by iteration cycle, which can cause abnormal changes in the greenhouse environment due to errors in output. The proposed algorithm distributes control procedures over multiple phases: environmental control, environmental control, and device operation, and every iteration cycle, detects environmental changes in the environmental control phase first, and then combines control devices that can control the environment in the environmental control phase, and finally, performs the controls to derive the actuators in the device operation phase. The proposed algorithm is designed based on the analysis of the relationship between greenhouse environmental elements and control devices deriving actuators. According to verification analysis, the multi-phase processing scheme provides room to modify or supplement the setting value and enables the control devices to reflect changes in the associated environmental components.

A Research on the Estimation Method for the SOC of the Lithium Batteries Using AC Impedance (AC 임피던스를 이용한 리튬 전지의 충전상태 추정에 관한 연구)

  • Lee, Jong-Hak;Kim, Sang-Hyun;Kim, Wook;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.457-465
    • /
    • 2009
  • Lithium batteries are widely used in mobile electronic devices due to their higher voltage and energy density, lighter weight and longer life cycle compared to other secondary batteries. In particular, high demand for lithium batteries is expected for electric cars. In case of lithium batteries used in electric cars, driving distance must be calculated accurately and discharging should not be done below the level of making it impossible to crank. Therefore, accurate information about state of charge (SOC) becomes an essential element for reliable driving. In this paper, a new method of estimating the SOC of lithium polymer batteries by using AC impedance is proposed. In the proposed method, parameters are extracted by fitting a curve of impedance measured at each frequency on the equivalent impedance model and extracted parameters are used to estimate SOC. Experiments were conducted on lithium polymer batteries with similar capacities made by different manufacturers to prove the validity of the proposed method.