• Title/Summary/Keyword: Driver drowsiness

Search Result 57, Processing Time 0.027 seconds

Driver Drowsiness Detection Algorithm based on Facial Features (얼굴 특징점 기반의 졸음운전 감지 알고리즘)

  • Oh, Meeyeon;Jeong, Yoosoo;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.11
    • /
    • pp.1852-1861
    • /
    • 2016
  • Drowsy driving is a significant factor in traffic accidents, so driver drowsiness detection system based on computer vision for convenience and safety has been actively studied. However, it is difficult to accurately detect the driver drowsiness in complex background and environmental change. In this paper, it proposed the driver drowsiness detection algorithm to determine whether the driver is drowsy through the measurement standard of a yawn, eyes drowsy status, and nod based on facial features. The proposed algorithm detect the driver drowsiness in the complex background, and it is robust to changes in the environment. The algorithm can be applied in real time because of the processing speed faster. Throughout the experiment, we confirmed that the algorithm reliably detected driver drowsiness. The processing speed of the proposed algorithm is about 0.084ms. Also, the proposed algorithm can achieve an average detection rate of 98.48% and 97.37% for a yawn, drowsy eyes, and nod in the daytime and nighttime.

System for Detecting Driver's Drowsiness Robust Variations of External Illumination (외부조명 변화에 강인한 운전자 졸음 감지 시스템)

  • Choi, WonWoong;Pan, Sung Bum;Shin, Ju Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.6
    • /
    • pp.1024-1033
    • /
    • 2016
  • In this study, a system is proposed for analyzing whether driver's eyes are open or closed on the basis of images to determine driver's drowsiness. The proposed system converts eye areas detected by a camera to a color space area to effectively detect eyes in a dark situation, for example, tunnels, and a bright situation due to a backlight. In addition, the system used a thickness distribution of a detected eye area as a feature value to analyze whether eyes are open or closed through the Support Vector Machine(SVM), representing 90.09% of accuracy. In the experiment for the images of driver wearing glasses, 83.83% of accuracy was obtained. In addition, in a comparative experiment with the existing PCA method by using Eigen-eye and Pupil Measuring System the detection rate is shown improved. After the experiment, driver's drowsiness was identified accurately by using the method of summing up the state of driver's eyes open and closes over time and the method of detecting driver's eyes that continue to be closed to examine drowsy driving.

A Study on the Development of Automatic Detection and Warning system while Drowsy Driving (졸음운전의 자동 검출 및 각성 시스템 개발에 관한 연구)

  • Kim, Nam-Gyun;Jeong, Gyeong-Ho;Kim, Beop-Jung
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.315-323
    • /
    • 1997
  • Driving is a complex vigilance task that includes improper lookout, excessive speed and inattention. The primary objective of this research is to detect driver drowsiness so that the driver can be alerted to an impending traffic accident in performance. We developed the automatic detection and warning system during drowsy driving. A drowsiness detection system must be able to monitor driver status and detect the detrimental changes of a driver performance. Eyeblink has been found to be a reliable factor of drowsiness detection in earlier studies. As an additional parameter, we also considered the yawning which often occurs in a low vigilance state and predicts the drowsy state. We used a computer vision method to extract the eyeblink and yawning in the face image sequences. When the drowsy state was detected, the driver was refreshed by alarming device and menthol scent generator after deciding the warning level by fuzzy logic. For the evaluation of our system, we measured the physiological parameters such as EOG and EEG. The results indicated that it is possible to detect and alert the driver drowsiness temporarily or continuously by using our system.

  • PDF

Development of a Sleep-driving Accident Prevention System based on pulse

  • Bae, Seung-Woo;Seo, Jung-Hwa
    • Korean Journal of Artificial Intelligence
    • /
    • v.6 no.1
    • /
    • pp.11-15
    • /
    • 2018
  • The purpose of this study is to develop a pulsatile drowsiness detection system that can compensate the limitations of existing camera - based or breathing pressure sensor based Drowsiness driving prevention systems. A heart rate sensor mounted on the driver's finger and an alarm system that sounds when drowsiness is detected. The heart rate sensor was used to measure pulse changes in the wrist, and an alarm system based on the Arduino, which works in conjunction with the laptop, generates an audible alarm in the event of drowsiness. In this paper, we assume that the pulse rate of the drowsy state is 60 ~ 65 times / minute, which is the middle between the awake state and the sleep state. As a result of the experiment, the alarm sounded when the driver's pulse rate was in the drowsy pulse rate range. Based on these experiments, the drowsiness detection system was able to detect the drowsiness of the driver successfully in real time. A more effective drowsiness prevention system can be developed in the future by incorporating the results of the present study on a pulse-based drowsiness prevention system in an existing drowsiness prevention system.

Implementation of Drowsiness Driving Warning System based on Improved Eyes Detection and Pupil Tracking Using Facial Feature Information (얼굴 특징 정보를 이용한 향상된 눈동자 추적을 통한 졸음운전 경보 시스템 구현)

  • Jeong, Do Yeong;Hong, KiCheon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.2
    • /
    • pp.167-176
    • /
    • 2009
  • In this paper, a system that detects driver's drowsiness has been implemented based on the automatic extraction and the tracking of pupils. The research also focuses on the compensation of illumination and reduction of background noises that naturally exist in the driving condition. The system, that is based on the principle of Haar-like feature, automatically collects data from areas of driver's face and eyes among the complex background. Then, it makes decision of driver's drowsiness by using recognition of characteristics of pupils area, detection of pupils, and their movements. The implemented system has been evaluated and verified the practical uses for the prevention of driver's drowsiness.

Development of a Drowsiness Detection System using Retinex Theory and Edge Information (레티넥스 이론과 에지를 이용한 졸음 감지 시스템 개발)

  • Kang, Su Min;Huh, Kyung Moo;Lee, Seung-ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.699-704
    • /
    • 2016
  • In this paper, we propose a development method for a drowsiness detection system using retinex theory and edge information for vehicle safety. Detection of a drowsy state of a driver is very important because the drowsiness of driver is often the main cause of many car accidents. After acquiring an image of the entire face, we executed the pre-process step using the retinex theory. We then applied a technique for the detection of the white pixels using edge information. Experimental results showed that the proposed method improved the accuracy of detecting drowsiness to nearly 98%, and can be used to prevent a car accident caused by the driver's drowsiness.

Drowsiness Detection Method during Driving by using Infrared and Depth Pictures

  • You, Gang-chon;Park, Do-hyun;Kwon, Soon-kak
    • Journal of Multimedia Information System
    • /
    • v.5 no.3
    • /
    • pp.189-194
    • /
    • 2018
  • In this paper, we propose the drowsiness detection method for car driver. This paper determines whether or not the driver's eyes are closed using the depth and infrared videos. The proposed method has the advantage to detect drowsiness without being affected by illumination. The proposed method detects a face in the depth picture by using the fact that the nose is closest to the camera. The driver's eyes are detected by using the extraction of harr-like feature within the detected face region. This method considers to be drowsiness if eyes are closed for a certain period of time. Simulation results show the drowsiness detection performance for the proposed method.

Driver Drowsiness Detection Model using Image and PPG data Based on Multimodal Deep Learning (이미지와 PPG 데이터를 사용한 멀티모달 딥 러닝 기반의 운전자 졸음 감지 모델)

  • Choi, Hyung-Tak;Back, Moon-Ki;Kang, Jae-Sik;Yoon, Seung-Won;Lee, Kyu-Chul
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.45-57
    • /
    • 2018
  • The drowsiness that occurs in the driving is a very dangerous driver condition that can be directly linked to a major accident. In order to prevent drowsiness, there are traditional drowsiness detection methods to grasp the driver's condition, but there is a limit to the generalized driver's condition recognition that reflects the individual characteristics of drivers. In recent years, deep learning based state recognition studies have been proposed to recognize drivers' condition. Deep learning has the advantage of extracting features from a non-human machine and deriving a more generalized recognition model. In this study, we propose a more accurate state recognition model than the existing deep learning method by learning image and PPG at the same time to grasp driver's condition. This paper confirms the effect of driver's image and PPG data on drowsiness detection and experiment to see if it improves the performance of learning model when used together. We confirmed the accuracy improvement of around 3% when using image and PPG together than using image alone. In addition, the multimodal deep learning based model that classifies the driver's condition into three categories showed a classification accuracy of 96%.

Real Time Driver's Respiration Monitoring (실시간 운전자 호흡 모니터링)

  • Park, Jaehee;Kim, Jaewoo;Lee, Jae-Cheon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.142-147
    • /
    • 2014
  • Real time driver's respiration monitoring method for detecting driver's drowsiness is investigated. The sensor to obtain driver's respiration signal was a piezoelectric pressure sensor attached at the abdominal region of the seat belt. The resistance of the pressure sensor was changed according to the pressure applied to the seat belt due to the driver's respiration. Monitoring driver's respiration was carried out by driving on the virtual road in a driving simulator from Cheonan to Seoul and monitoring results were compared to the PELCLOS. Experiment results show that the driver's respiration signal can be used for detecting driver's drowsiness.

Development of a Drowsiness Detection System using a Histogram for Vehicle Safety (자동차 안전을 위한 히스토그램 이용 졸음 감지 시스템 개발)

  • Kang, Su Min;Huh, Kyung Moo;Joo, Young-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.102-107
    • /
    • 2015
  • In this paper, we propose a technique of drowsiness detection using a histogram for vehicle safety. The drowsiness of vehicle drivers is often the main cause of many vehicle accidents. Therefore, the checking of eye images in order to detect the drowsiness status of a driver is very important for preventing accidents. In our suggested method, we analyse the changes of a histogram of eye region images which are acquired using a CCD camera. We develop a drowsiness detection system using this histogram change information. The experimental results show that the proposed method enhances the accuracy of detecting drowsiness to nearly 97%, and can be used to prevent accidents due to driver drowsiness.