• Title/Summary/Keyword: Driver Motion

Search Result 209, Processing Time 0.027 seconds

A Research on the Wheelchair Carrier for Disabled Driver (장애인 휠체어 캐리어에 관한 연구)

  • Lee, S.C.;Park, S.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • In this paper, the feasibility of a wheelchair carrier for the disabled own driver is checked kinematically to fit one of current domestic vans by drawings, design. A van with 9 passengers is selected for the modification to attach the wheelchair carrier and test the operation in real situation. The trajectory and motion process are studied to protect from the interception with outside body of van, and the conceptual design is proceeded kinematically. For the detail design, the stress analysis and driving mechanism with power supply must be studied and selected basically.

  • PDF

Transverse flux circumferential induction method as a driving principle of the contact-free revolving stage (비접촉 회전 스테이지에의 구동 원리로서의 횡자속 원주형 유도 방법)

  • Kim, Hyo-Jun;Jung, Kwang-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.72-79
    • /
    • 2005
  • Compared with linear induction principle, the transverse flux circumferential induction principle is suggested as a driving mechanism of the revolving stage, which can rotate contactlessly without any supporting structure. The stage realizes the integrated motion of levitation, rotation, and planar perturbation, using the two-axis forces, normally directed force of the air-gap and tangential force, of the induction drivers mounted on the stator uniformly. In this paper, the force generating mechanism of the stage is described in detail. First, the various core shapes generating the transverse flux are analyzed to guarantee the proper thrust force. And the vector force intensity of the circumferential induction driver constituting the stage is compared with that of the linear induction driver. Especially it is shown that the magnetic force of the suggested system can be modeled with the linear equivalent model, including the test verification.

An Investigation of Con01 Threshold of Vehicle Stability Control System (제어시점에 따른 차량 안정성 제어 시스템의 제어 경향)

  • Chung, Tae-Young;Yi, Kyong-Su
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.195-201
    • /
    • 2005
  • In conventional Vehicle Stability Control (VSC) System, a control threshold is designed by average driver characteristics. Despite the stabilizing effort, VSC causes redundancy to an expert driver. An advanced VSC which has flexibility on its control property is proposed in this study. By using lateral velocity estimator, a control threshold is determined on side slip angle and angular velocity phase plane. Vehicle planar motion model based sliding controller is modified with respect to various control thresholds. The performance of the proposed VSC algorithm has been investigated by human-in-the-loop simulation using a vehicle simulator. The simulation results show that the control threshold has to be determined with respect to the driver steering characteristics. A VSC with variable control thresholds would provide an improvement compared to a VSC with a constant threshold.

LRF-Based Servo System for a Manipulator Grasping Moving Cylinders (움직이는 원통형 물체를 잡는 매니퓰레이터를 위한 레이저 거리계 기반의 서보시스템)

  • Cheon, Hong-Seok;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.263-272
    • /
    • 2008
  • We implemented a real-time servo system for a manipulator based on Laser Range Finder (LRF). and established algorithms for grasping a moving cylinder. We devised a manipulator mechanism and driving hardware based on a system board equipped with Xscale Processor with real-time operating system RTAI on Linux. The manipulator motor driver is connected to the system board via CAN communication link, and LRF is connected via RS-232C. We implemented real-time software including CAN device driver, RS-232C device driver, manipulator trajectory generator, and LRF control software. A typical application experiment for grasping a cylinder with circle motion demonstrated our system's real-time performance.

14.1" XGA AMLCD with Integrated Black Data Insertion as an application of a-Si TFT Gate Driver

  • Choi, Woo-Seok;Kim, Hae-Yeol;Cho, Hyung-Nyuck;Ryu, Chang-Il;Yoon, Soo-Young;Jang, Yong-Ho;Park, Kwon-Shik;Kim, Binn;Choi, Seung-Chan;Cho, Nam-Wook;Moon, Tae-Woong;Kim, Chang-Dong;Kang, In-Byeong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.583-586
    • /
    • 2009
  • A 14.1" XGA (1024${\times}$768) LCD panel with Integrated Black Data Insertion (IBDI) has been world first developed successfully based on the integrated amorphous Silicon TFT gate driver which we previously introduced. The notable features compared with the conventional integrated a-Si TFT gate driver circuit are that the circuit consists of Dual buffer, Carry buffer structure, and Q-node cross charging for stable signal scanning characteristic and prevention of coupling between signal lines.

  • PDF

A Study on the Characteristic Improvement of PLD-used Microstep Driver for 5 Phase Hybrid Stepping Motor (PLD를 이용한 5상 스텝모터의 마이크로스텝 구동회로의 집적화와 성능향상에 관한 연구)

  • Ahn, Ho-Kyun;Park, Seung-Kyu;Nam, Jing-Rak;Ji, Dae-Young;Song, Chi-Hoon;Kim, Hyung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1143-1145
    • /
    • 2000
  • In this paper, it presents the design and implementation of a Microstep control IC using Programmable Logic Device(PLD). A Microstep driver is implemented with a 5-phase hybrid stepping motor, which has a Pentagon winding, power MOSFETs, and some devices to improve the system characteristics. The Microstep driving method is used for high performance motion control, low vibration and low noise in motor control system. The improvement of the electrical and mechanical driving characteristic of a step motor is achieved by applying microstep driver.

  • PDF

Multimodal Interface Based on Novel HMI UI/UX for In-Vehicle Infotainment System

  • Kim, Jinwoo;Ryu, Jae Hong;Han, Tae Man
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.793-803
    • /
    • 2015
  • We propose a novel HMI UI/UX for an in-vehicle infotainment system. Our proposed HMI UI comprises multimodal interfaces that allow a driver to safely and intuitively manipulate an infotainment system while driving. Our analysis of a touchscreen interface-based HMI UI/UX reveals that a driver's use of such an interface while driving can cause the driver to be seriously distracted. Our proposed HMI UI/UX is a novel manipulation mechanism for a vehicle infotainment service. It consists of several interfaces that incorporate a variety of modalities, such as speech recognition, a manipulating device, and hand gesture recognition. In addition, we provide an HMI UI framework designed to be manipulated using a simple method based on four directions and one selection motion. Extensive quantitative and qualitative in-vehicle experiments demonstrate that the proposed HMI UI/UX is an efficient mechanism through which to manipulate an infotainment system while driving.

Experimental Study on the Vibration Control for Building Structures using LQG Compensator (LQG 보상기를 이용한 건물의 진동제어 실험)

  • 민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.202-216
    • /
    • 1999
  • To control the motion of building structures under earthquakes their response should be measured first by various sensors and transformed into the control forces using some control algorithms. Of many control algorithms linear quadratic control is widely used as it is easy to implement and analyze. However the algorithms has the disadvantage that it needs the real-time measurements of all state variables(i.e, building's displacements and velocities) which are difficult to achieve for the building structures under earthquakes. Thus the practical algorithms employing output feedback are developed. In this paper LQG algorithm is used for the control of the building model with an active mass driver. The building's acceleration is used to obtain the control gain and the Kalman filter gain. The LQG control strategy is verified with the experimental study on the one-storybuilding model equipped with the active mass driver. This paper demonstrates experimentally the efficacy of the LQG algorithm based on the active mass driver system in reducing the response of seismically excited buildings.

  • PDF

Underlying Control Strategy of Human Leg Posture and Movement

  • Park, Shinsuk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.649-663
    • /
    • 2004
  • While a great number of studies on human motor control have provided a wide variety of viewpoints concerning the strategy of the central nervous system (CNS) in controlling limb movement, none were able to reveal the exact methods how the movement command from CNS is mapped onto the neuromuscular activity. As a preliminary study of human-machine interface design, the characteristics of human leg motion and its underlying motor control scheme are studied through experiments and simulations in this paper. The findings in this study suggest a simple open-loop motor control scheme in leg motion. As a possible candidate, an equilibrium point control model appears consistent in recreating the experimental data in numerical simulations. Based on the general leg motion analysis, the braking motion by the driver's leg is modeled.

A Development of Sub-Controller for Game Motion Simulator (게임기용 운동재현기의 하위제어기 설계)

  • Jung, Gyu-Hong;Suh, Chung-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.146-151
    • /
    • 2001
  • The Grand-Touring is a game motion simulator that simulates the race-car driving motion with three hydraulic cylinders which connect the platform and base in parallel. Its motion control system consists of the PC-based main controller and micro-controller based sub-controller. The former one process the dynamic image of race-car in response to the driver's action and computes the reference command for each cylinder and the latter one is designed for the tracking control of hydraulic cylinder and interfacing the auxiliary signals between various sensors/actuator and main controller. In this research, we developed the sub-controller that implements the required functions of Grand-Touring and prove the overall performance with experiments.

  • PDF