• Title/Summary/Keyword: Driver Factor

Search Result 282, Processing Time 0.02 seconds

Design of Driver's Cab for KHST Power Car (한국형 고속전철 동력차 운전실 설계)

  • 염경안;강석택;박광복
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.139-145
    • /
    • 1999
  • The design of driver's cab includes the structure of cab frame, the layout of driver's cab equipment and facilities, i.e. driver's desk, seat, windows, floor, interior equipment, cab partition etc. The concept applied to the detail design has to be based on the ergonomics to guarantee the safety, comfort, and easy operation for the driver. In the aspect of manufacture, one more factor 'modulization' has to be considered into the design of sub blocks for cost-down. The design has to be implemented in the space allocated for driver's cab, which space is directly determined by the cab frame, optimized for the layout of driver's cab. The design process and results of the driver's cab for KHST will be described in this paper.

  • PDF

Balanced Forward-Flyback Converter for High Efficiency and High Power Factor LED Driver (고효율 및 고역률 LED 구동회로 위한 Balanced Forward-Flyback 컨버터)

  • Hwang, Min-Ha;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.492-500
    • /
    • 2013
  • A balanced forward-flyback converter for high efficiency and high power factor using a foward and flyback converter topologies is proposed in this paper. The conventional AC/DC flyback converter can achieve a good power factor but it has the high offset current through the transformer magnetizing inductor, which results in a large core loss and low power conversion efficiency. And, the conventional forward converter can achieve the good power conversion efficiency with the aid of the low core loss but the input current dead zone near zero cross AC input voltage deteriorates the power factor. On the other hand, since the proposed converter can operate as the forward and flyback converters during switch turn-on and turn-off periods, respectively, it cannot only perform the power transfer during an entire switching period but also achieve the high power factor due to the flyback operation. Moreover, since the current balanced capacitor can minimize the offset current through the transformer magnetizing inductor regardless of the AC input voltage, the core loss and volume of the transformer can be minimized. Therefore, the proposed converter features a high efficiency and high power factor. To confirm the validity of the proposed converter, theoretical analysis and experimental results from a prototype of 24W LED driver are presented.

Robust Active LED Driver with High Power Factor and Low Total Harmonic Distortion Compatible with a Rapid-Start Ballast

  • Park, Chang-Byung;Choi, Bo-Hwan;Cheon, Jun-Pil;Rim, Chun-Taek
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.226-236
    • /
    • 2014
  • A new active LED driver with high power factor (PF) and low total harmonic distortion (THD) compatible with a rapid-start ballast is proposed. An LC input filter is attached to the ballast to increase PF and reduce THD. A boost converter is then installed to regulate the LED current, where an unstable operating region has been newly identified. The unstable region is successfully stabilized by feedback control with two zeroes. The extremely high overall system of the 10th order is completely analyzed by the newly introduced phasor transformed circuits in static and dynamic analyses. Although a small DC capacitor is utilized, the flicker percentage of the LED is drastically mitigated to 1% by the fast controller. The proposed LED driver that employs a simple controller with a start-up circuit is verified by extensive experiments whose results are in good agreement with the design.

Proactive Autonomous Emergency Braking System for the Elderly Driver (고령운전자를 위한 자동긴급제동시스템 기술 개발)

  • Donghoon Shin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.2
    • /
    • pp.14-19
    • /
    • 2024
  • This paper describes autonomous emergency braking systems (AEB) for elderly drivers designed to consider their driving characteristics. With aging, perception-reaction time, and decision-making time increase accordingly. Without being aware of these performance degradations, however, changes in driving patterns due to increased alertness while driving lead to vehicle crashes. Therefore, it is necessary to develop an autonomous emergency braking system by incorporating the characteristics of the elderly driver. In order to enhance the driver acceptance of older people, perception-reaction time, alertness, and ride comfort need to be considered for conventional autonomous emergency braking systems (C-AEB). Proactive AEB(P-AEB) algorithm has been proposed to reflect human factor of elderly driver above. The performance of the proposed algorithm has been evaluated through MATLAB simulink simulation studies. It has been shown from the computer simulations that the proposed P-AEB algorithm enhances the driver acceptance of older people by improving ride comfort while ensuring safety of vehicle.

A study on AC-powered LED driver IC (교류 구동 LED 드라이버 IC에 관한 연구)

  • Jeon, Eui-Seok;An, Ho-Myoung;Kim, Byungcheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.4
    • /
    • pp.275-283
    • /
    • 2021
  • In this study, a driver IC for an AC-powered LED that can be manufactured with a low voltage semiconductor process is designed and the performances of the driver IC were simulated. In order to manufacture a driver IC that operates directly at AC 220V, a semiconductor manufacturing process that satisfies a breakdown voltage of 500V or higher is required. A semiconductor manufacturing process for a high-voltage device requires a much higher manufacturing cost than a general semiconductor process for a low-voltage device. Therefore, the LED driver IC is designed in series so that it can be manufactured with semiconductor process technology that implements a low-voltage device. This makes it possible to divide and apply the voltage to each LED block even if the input voltage is high. The LED lighting circuit shows a power factor of 96% at 220V. In the pnp transistor circuit, a very high power factor of 99.7% can be obtained, and it shows a very stable operation regardless of the fluctuation of the input voltage.

An Analysis of X-Factor, Triple X-Factor, and the Center of Pressure (COP) according to the Feel of the Golf Driver Swing

  • Kim, Yong-Seok;So, Jae-Moo
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.265-272
    • /
    • 2016
  • Objective: The aim of this study was to analyze X-factor, triple X-factor, and the center of pressure (COP) according to the feel of golf driver swing. Method: For this research, 9 golfers from the Korea Professional Golfers' Association (age: $30.11{\pm}2.98yrs$, height: $178.00{\pm}8.42cm$, weight: $76.22{\pm}8.42kg$, experience: $10.06{\pm}3.11yrs$) were recruited to participate in the experiment. Twelve Motion Analysis Eagle-4 cameras were installed and an image analysis was conducted by using the NLT (non-linear transformation) method, and 2 units of Kistler type 5233A dynamometer were used to measure ground reaction force. The sampling ratio was set at 1000 Hz. The golfers each took 10 swings by using their own driver, and chose the best and worse feel from among 10 shots. A paired-sample t-test was used to analyze the results. Results: In regard to feel, no change in head speed, X-factor, and the triple X-factor's X-factor stretch, hip rise, and head swivel, was observed (p>.05). Regarding ground reaction force, a difference was observed between the top of the backswing (p<.05) and impact (p<.05) in the vertical force of the left foot. For COP, a difference was also observed between the mid backswing (p<.001), late backswing (p<.001), and top of the backswing (p<.05) for the right foot X-axis and Y-axis mid follow through (p<.01). Conclusion: It can be reasoned that, irrespective of feel, the head speed, X-factor and triple X-factor's X-factor stretch, hip rise and head swivel did not have an effect on drive distance for domestic golfers, and the vertical reaction force of the left foot and left-right movement span's pressure dispersal of the right foot had an increasing effect on drive distance.

The Design of Long-life and High-efficiency Passive LED Drivers using LC Parallel Resonance (LC 병렬공진을 이용한 고효율 장수명 LED 구동회로 설계)

  • Lee, Eun-Soo;Choi, Bo-Hwan;Cheon, Jun-Pil;Kim, Bong-Cheol;Rim, Chun-Taek
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.397-402
    • /
    • 2013
  • This paper proposes a new passive type LED driver which satisfies the standard of power factor (PF) and total harmonic distortion (THD). The proposed passive LED driver also has high-efficiency and long-life time characteristics compared to active LED driver which is composed of op-amp, switches and so on. By using just passive components such as inductor, capacitor, and diode, it has resolved extremely short-life time and low-efficiency problems of previous LED drivers. It has achieved PF of 0.99, THD of 16.4 %, and the total efficiency of 95 %. The proposed passive LED driver is fully analyzed and verified by simulations and experiments, which results are in good agreement each other.

Development of Single-stage Power Factor Corrected Converter for Single-Phase SRM Drive (단상 SRM 구동을 위한 1단 방식 역률보상형 컨버터 개발)

  • 빈재구;이정한;조승현;박성준;김철우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.519-526
    • /
    • 2003
  • A singl-phase power factor corrected converter for switched reluctance motor hive is presented to achieve a sinusoidal and new unity power factor input currents. Because it combines a power factor corrected converter and a conventional asymmetric SRM driver into one power stage, the configuration has a simple structure resulted in low cost. A prototype to drive 6/6 poles SRM employing a parking magnet Is designed to evaluate the proposed topology. The characteristics and operational mode will be discussed in depth, and the validity of proposed driver will be verified through the experimental results.

Power Factor Correction LED Driver with Small 120Hz Current Ripple (낮은 120Hz 출력 전류 리플을 갖는 역률개선 LED 구동 회로)

  • Sakong, Suk-Chin;Park, Hyun-Seo;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.91-97
    • /
    • 2014
  • Recently, the LED(Light Emitting Diode) is expected to replace conventional lamps including incandescent, halogen and fluorescent lamps for some general illumination application, due to some obvious features such as high luminous efficiency, safety, long life, environment-friendly characteristics and so on. To drive the LED, a single stage PFC(Power Factor Correction) flyback converter has been adopted to satisfy the isolation, PFC and low cost. The conventional flyback LED driver has the serious disadvantage of high 120Hz output current ripple caused by the PFC operation. To overcome this drawback, a new PFC flyback with low 120Hz output current ripple is proposed in this paper. It is composed of 2 power stages, the DCM(Discontinuous Conduction Mode) flyback converter for PFC and BCM(Boundary Conduction Mode) boost converter for tightly regulated LED current. Since the link capacitor is located in the secondary side, its voltage stress is small. Moreover, since the driver is composed of 2 power stages, small output filter and link capacitor can be used. Especially, since the flyback is operated at DCM, the PFC can be automatically obtained and thus, an additional PFC IC is not necessary. Therefore, only one control IC for BCM boost converter is required. To confirm the validity of the proposed converter, theoretical analysis and experimental results from a prototype of 24W LED driver are presented.

The Design of High efficiency multi-channel LED light Driver suitable for Streetlamp (가로등에 적합한 고효율 멀티채널 LED 조명 구동장치 설계)

  • Song, Je-Ho;Kim, Hwan-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4489-4493
    • /
    • 2014
  • LED light driving device has problems in efficiency and heating at higher than 150W. In addition, there is inconvenience in replacing the lighting device to another when W is not the same as the previous one. In this paper, a multi-channel LED light driver, driver embedded driver circuit in a multi-channel structure with a power system in the driver-interlocking structure was designed. With the auto control converter structure with a power efficiency above 93% and power factor above 0.98, the weight of the high efficiency LED lighting-actuating device in driver-interlocking structure, a driver in self-calibrating self-optimization structure. In this paper, at below 10% THD, the existing converter contrast weight was reduced by 40% or more.