• Title/Summary/Keyword: Driver Emotion

Search Result 58, Processing Time 0.025 seconds

Differences in Driver's Longitudinal Vehicle Control, Subjective Fatigue, and Perceived Fidelity in 2D and 3D Display Driving Simulation (2D와 3D 디스플레이로 구현된 운전 시뮬레이션에서 운전자의 종적 차량통제 수행, 주관적 피로감 및 지각된 현실감의 차이)

  • Park, Dong-Jin;Lee, Jaesik
    • Science of Emotion and Sensibility
    • /
    • v.17 no.4
    • /
    • pp.3-18
    • /
    • 2014
  • In this study, drivers' longitudinal car control, subjective fatigue, and perceived fidelity were compared between 2D and 3D display driving simulation. The results can be summarized as followings. First, in all target speed conditions, the drivers tended to drove faster in 2D display condition than 3D display condition. Second, speed deviation from target speed increased as target speed decreased. Third, distances between the lead vehicle and the driver's vehicle were significantly reduced in the 3D display condition when the speeds of the lead vehicle were relatively fast(i. e., over 80km/h). Fourth, although the perceived fidelity was not significantly different between the two display conditions, subjective fatigue was higher in the 3D display condition than in the 2D display condition.

Evaluation of a Traffic Light System Focusing on Autonomic Nervous System Activity for Overcoming Yellow Signal Dilemma (황색신호 딜레마 극복을 위한 자율신경계 활성도 중심의 신호체계 평가)

  • Jo, Hyung-Seok;Kim, Kyu-Beom;Ahn, Seok-Huen;Min, Byung-Chan
    • Science of Emotion and Sensibility
    • /
    • v.23 no.3
    • /
    • pp.3-10
    • /
    • 2020
  • This study is aimed at investigating drivers' reactions to yellow signal dilemma situations as a result of the existing signal system, and developing a new signal system. A driver-centered coping model was developed through bio-signal analysis. The driver's physiological response in the existing signal system was observed, and the signal system was developed by applying intersection road driving conditions using a car graphic simulator. Participants were classified into a control group (existing signal system) and an experimental group for a new yellow signal system (new signal system). Based on the results, the emergence of parasympathetic nerves was higher in the experimental group than in the control group, where a statistically significant difference was observed (p < 0.05). The newly developed signal system appeared to cause tension among drivers; however, the sympathetic to parasympathetic nerve ratio was 6: 4, which could be interpreted as an ideal balance. We conclude that drivers can drive more stably if the coping signal system developed in this study is applied to the traffic system.

Evaluation for the cognition and usability of HUD while driving (주행 중 운전자의 HUD 인지성과 활용성 평가)

  • Yun, BoRam;Park, DaEun;Kim, BoKyung;Cho, JuYung;Park, YungKyung
    • Science of Emotion and Sensibility
    • /
    • v.17 no.3
    • /
    • pp.117-128
    • /
    • 2014
  • As the main cause of car accidents is driver distraction, HUD utilization is important to boost drivers' front-observing. Recently, As HUD includes a variety of contents products have appeared on market, the possibility increases cognitive load while driving. The purpose of this study is that currently being used HUD contents how much affect drivers while driving. To investigate about it, the experiment is examined cognitive aspect with utilization aspect of different gender and illuminance environment. The study provides, in accordance with the internal and external illuminance, the visibility make a difference. The gap between the internal and external illuminance is higher, the visibility is better. Also, this study confirms that HUD's awareness of contents depends on driving information. Drivers concentrate more on higher related driving contents than lower ones.

An Investigation into the Measured Values of Driver's Subjective and Objective Sensibility Response Stimulated by Different Car Noises (서로 다른 자동차소음에 대한 운전자의 주관적 및 객관적 감성반응 측정치에 관한 조사)

  • Kim, Tae Hyun;Cho, Jae Hoon;Cho, Won Hak;Lee, Moon Sub;Choi, Hyeon Ki
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.1
    • /
    • pp.73-79
    • /
    • 2016
  • The purpose of this study is to understand human sensory and emotional response according to car noise. This study investigated human stress levels from car noise based on the data of electro-encephalogram (EEG) and subjective evaluation analysis data. Since there are few previous works on the effect of car noise on human's reaction, more profound research about the effect of car noise on driver's emotion would be worth performing. Subjects were exposed to five different kinds of car noises. EEG data were collected while the subject was exposed to noise. In order to process EEG data, FFT analysis was used to separate the collected EEG data into ${\alpha}$-wave and ${\beta}$-wave. Also, survey was performed to carry out subjective evaluation. The results of the subjective evaluation were closely correlated to those found in the EEG signal analysis. The results from this study may provide useful information for mitigating car noise induced stress.

Vehicle HUD's cognitive emotional evaluation - Focused on color visibility of driving information (차량용 HUD의 인지적 감성 평가 -주행정보의 색채 시인성을 중심으로-)

  • Choi, Won-Jung;Lee, Won-Jung;Lee, Seol-Hee;Park, YungKyung
    • Science of Emotion and Sensibility
    • /
    • v.16 no.2
    • /
    • pp.195-206
    • /
    • 2013
  • The main causes of traffic accidents while driving a car is of the driver's visual distraction. In this study, the color sensitivity of the information projected on the windshield were evaluated for HUD (Head Up Display) system which helps the driver's eyes on the road while driving. The driving Information were projected $9^{\circ}$ downward from front sight $0^{\circ}$ under lab's fluorescent lights, LED floorlights and the TV had having 25 [lux] illumination when driving at night environment and 100,000 [lux] of daylight environment. Munsell color hue of the basic five colors (R, Y, G, B, P) and the color of traffic lights YR, W were the color of the seven characters, each character were outlined by White, Gray except for W. Total of 19 experimental stimuli was shown in the environment of day and night driving for asking visibility information of color, fatigue, preferences, and evaluate the degree of interference. The results came out that the bright Y and G color is visibility significantly for daylight. Second, with the outline of the text, the color of the outline works as a background for luminance contrast effects and affects visibility. Third, without the outline, the glass in front of the vehicle acts as the background and the luminance contrast of characters achieve greater brightness and visibility. The luminance contrast between the stimuli and background should be considered for increasing color visibility for driving information which is an important factor for HUD commercialization.

  • PDF

Analysis of Ventilating Seat Comfort Temperature for Improving the Thermal Comfort inside Vehicles (자동차 실내 열쾌적성 개선을 위한 통풍시트의 쾌적온도 분석)

  • In, Chung-Kyo;Kwak, Seung-Hyun;Kim, Chang-Hoon;Kim, Kyu-Beom;Jo, Hyung-Seok;Seo, Sang-hyeok;Myung, Tae-Sik;Min, Byung-Chan
    • Science of Emotion and Sensibility
    • /
    • v.23 no.4
    • /
    • pp.33-40
    • /
    • 2020
  • As the number of automobile registrations increases and luxury expectations grow, consumers are increasingly interested in indoor environment of vehicles. Therefore, manufacturers have an increasing interest in improving the indoor comfort as well as automobile performance. Research on indoor automobile comfort can help manufacturers increase driver satisfaction and reduce driver stress and discomfort, thereby reducing the risk of traffic accidents. Using electroencephalogram (EEG) measurements, we investigated the change in comfort and comfortable temperature according to the ventilating seat temperature change for both men and women. Results showed that the sensation of comfort was statistically significantly higher at 25℃ than at 28℃. Secondly, there was no statistically significant difference in temperature-based comfort feeling between male and female subjects. In the future, if the correlation between the driver's comfort feeling and the change in ventilating seat temperature is analyzed, it is possible to reduce traffic accidents caused by human error and reduce the electric energy consumption of the automobile.

Comparison of Driving Posture and Sensibility Differences between Transmission Modes and the Position of Pedals (차량의 변속형태에 의한 페달 위치에 따른 운전자세 비교 및 감성차이 분석 연구)

  • Jeon, Yong-Wook;Cha, Doo-Won;Park, Peom
    • Science of Emotion and Sensibility
    • /
    • v.4 no.1
    • /
    • pp.53-60
    • /
    • 2001
  • As a part of HMS(Human-Machine System), the car is very important thing in common life. It is also a significant part to study on the controllers of car that is intentively related with all sensibilities during driving. There are lots of controllers on seating buck of the car. However, there are few study on the sensibility analysis of them. Most of all, the foot controller could be easily overlooked because it could be invisible. This study was based on relationship that the controllers fitted to the driving posture in the drivers' sensibility difference of two transmission modes, automatic and manual transmission. The results show the driver's preference driving posture and sensibility in two kinds of transmission cars. Consequently, it should be designed the seating buck for two different types respectively to be taken comfort driving posture and improve the safety for drivers. Also, it could reduce the fatigue and discomfort in the task of driving. The design of the controllers strongly effects on the drivers' response time. hereby this study was accessed to the sensibility of Korean with analyzing the relationship, quantitative data, and sensibility difference between two kinds of transmission cars.

  • PDF

Study on the Variation of Driver's Biosignals According to the Color Temperature of Vehicle Interior Mood Lighting (자동차 실내 무드조명의 색온도에 따른 운전자의 생체신호 변화)

  • Kim, Kyu-Beom;Jo, Hyung-Seok;Kim, Young-Jung;Min, Byung-Chan
    • Science of Emotion and Sensibility
    • /
    • v.23 no.2
    • /
    • pp.3-12
    • /
    • 2020
  • The purpose of this work is to suggest the optimal color temperature, which induces a sense of comfort for autonomous vehicle users through the analysis of biosignal using electroencephalography (EEG) and photoplethysmography (PPG). To achieve this purpose, we applied lighting with a color temperature of 3000 K, 4000 K, 5000 K, and 6000 K to the autonomous driving environment. We experimented in a laboratory equipped with a graphic driving simulator. The experimental procedure is as follows: 1) stabilization (5 min). 2) Uchida-Kraepelin test (3 min). 3) Automatic driving + lighting (3 min). This procedure was repeated four times under different color temperatures. We performed frequency analysis on a collected time-series data and calculated the power value for each frequency band through power spectrum analysis. In the case of EEG, we analyzed α- and β-waves, which are indicators of stability and arousal, respectively. In the case of PPG, we analyzed the sympathetic nervous system activity. To reduce deviations between the subjects, we normalized the data before analysis. The result of the first analysis revealed that α-wave increased only at 5000 K, while the β-wave increased at almost all color temperatures. In addition, in the case of PPG, sympathetic nervous system activity (SNSA) increased under driving conditions. The result of the second analysis revealed that the difference between β-wave and SNSA is insignificant. In conclusion, the increase in α-waves showed that EEG was most stable at 5000 K. The results of this study can be applied to the upcoming autonomous driving era to induce high driver satisfaction. Furthermore, this approach could eventually lead to the acceptance of autonomous vehicles by suggesting a positive effect of autonomous driving.

Effect of Motor Cues and Secondary Task Complexity on Driving Performance and Task Switching While Driving (운전 중 IVIS 조작 상황에서 Motor Cue와 과제의 난이도가 과제 전환과 운전 주행에 미치는 영향)

  • Ryoo, Eunhyun;Han, Kwanghee
    • Science of Emotion and Sensibility
    • /
    • v.21 no.2
    • /
    • pp.29-42
    • /
    • 2018
  • As information technology is more actively incorporated into automobiles, the role of IVIS (In-Vehicle Infotainment System) is becoming increasingly important for providing convenience and entertainment for drivers. However, using the infotainment systems while driving requires task switching and attending to two visual resources simultaneously. We simulated a setting where participants have to drive while interacting with the infotainment system and examined how task difficulty and motor cues impact driver task-switching and driving performance, specifically whether the effects of motor cues differ depending on task difficulty. For the infotainment display, we used two types of number array depending on the congruency between the digit repetition and the chunking unit, while task difficulty was manipulated by the size of the touch-keys. Participants were instructed to dial two numbers on the screen while we recorded the dialing time, lateral position, inter-key press intervals, and steering wheel control. We found that dialing time and lateral position were affected by task difficulty, while the type of number array had no effect. However, the inter-key press intervals between chunked numbers and steering wheel movement both increased when participants had to use an incongruent number array, which indicates that, if number digits are repeated, chunking is ignored by the drivers. Our findings indicate that, in a dual-task condition, motor cues offset the effect of chunking and can effectively signal the timing for task switching.

Evaluations on Driver's Sensibility Changes by Sudden Start and Sudden Stop Conditions in Driving Simulator (자동차 시뮬레이터에서의 급출발 및 급제동에 따른 운전자 감성 평가)

  • 전효정;민병찬;성은정;김철중
    • Science of Emotion and Sensibility
    • /
    • v.5 no.4
    • /
    • pp.51-57
    • /
    • 2002
  • The purpose of the study was to measure and compare driver's psychophysiological responses in different driving conditions through driving simulator. Twelve male adults(more than 1 year of driving experience) were assigned to four different driving conditions, such as normal speed(70㎞/h), sudden start(0㎞/h→70㎞/h), and sudden stop(70㎞/h→0㎞/h), and their simulator sickness, subjective pleasantness and arousal, EEG, ECG, skin temperature, and GSR were measured. Subjective and physiological evaluations were executed before and after driving in each condition. The results showed that subjective pleasantness and arousal increased in sudden stop and sudden start conditions, relative to stop and normal speed conditions. As the central nervous responses, beta wave increased and alpha wave decreased in sudden stop and sudden start conditions, relative to stop and normal speed conditions. With regard to the autonomic responses, heart rate and GSR increased, while skin temperature decreased in sudden stop and sudden start conditions, which means an activation of sympathetic nervous system. The results suggested that based upon observation of the distinctive psychophysiological changes by driving conditions, it is possible to evaluate the human sensibility in dynamic environment.

  • PDF