• 제목/요약/키워드: Driver′s drowsiness

검색결과 39건 처리시간 0.025초

외부조명 변화에 강인한 운전자 졸음 감지 시스템 (System for Detecting Driver's Drowsiness Robust Variations of External Illumination)

  • 최원웅;반성범;신주현
    • 한국멀티미디어학회논문지
    • /
    • 제19권6호
    • /
    • pp.1024-1033
    • /
    • 2016
  • In this study, a system is proposed for analyzing whether driver's eyes are open or closed on the basis of images to determine driver's drowsiness. The proposed system converts eye areas detected by a camera to a color space area to effectively detect eyes in a dark situation, for example, tunnels, and a bright situation due to a backlight. In addition, the system used a thickness distribution of a detected eye area as a feature value to analyze whether eyes are open or closed through the Support Vector Machine(SVM), representing 90.09% of accuracy. In the experiment for the images of driver wearing glasses, 83.83% of accuracy was obtained. In addition, in a comparative experiment with the existing PCA method by using Eigen-eye and Pupil Measuring System the detection rate is shown improved. After the experiment, driver's drowsiness was identified accurately by using the method of summing up the state of driver's eyes open and closes over time and the method of detecting driver's eyes that continue to be closed to examine drowsy driving.

얼굴 특징 정보를 이용한 향상된 눈동자 추적을 통한 졸음운전 경보 시스템 구현 (Implementation of Drowsiness Driving Warning System based on Improved Eyes Detection and Pupil Tracking Using Facial Feature Information)

  • 정도영;홍기천
    • 디지털산업정보학회논문지
    • /
    • 제5권2호
    • /
    • pp.167-176
    • /
    • 2009
  • In this paper, a system that detects driver's drowsiness has been implemented based on the automatic extraction and the tracking of pupils. The research also focuses on the compensation of illumination and reduction of background noises that naturally exist in the driving condition. The system, that is based on the principle of Haar-like feature, automatically collects data from areas of driver's face and eyes among the complex background. Then, it makes decision of driver's drowsiness by using recognition of characteristics of pupils area, detection of pupils, and their movements. The implemented system has been evaluated and verified the practical uses for the prevention of driver's drowsiness.

실시간 운전자 호흡 모니터링 (Real Time Driver's Respiration Monitoring)

  • 박재희;김재우;이재천
    • 센서학회지
    • /
    • 제23권2호
    • /
    • pp.142-147
    • /
    • 2014
  • Real time driver's respiration monitoring method for detecting driver's drowsiness is investigated. The sensor to obtain driver's respiration signal was a piezoelectric pressure sensor attached at the abdominal region of the seat belt. The resistance of the pressure sensor was changed according to the pressure applied to the seat belt due to the driver's respiration. Monitoring driver's respiration was carried out by driving on the virtual road in a driving simulator from Cheonan to Seoul and monitoring results were compared to the PELCLOS. Experiment results show that the driver's respiration signal can be used for detecting driver's drowsiness.

이미지와 PPG 데이터를 사용한 멀티모달 딥 러닝 기반의 운전자 졸음 감지 모델 (Driver Drowsiness Detection Model using Image and PPG data Based on Multimodal Deep Learning)

  • 최형탁;백문기;강재식;윤승원;이규철
    • 데이타베이스연구회지:데이타베이스연구
    • /
    • 제34권3호
    • /
    • pp.45-57
    • /
    • 2018
  • 주행 중에 발생하는 졸음은 큰 사고로 직결될 수 있는 매우 위험한 운전자 상태이다. 졸음을 방지하기 위하여 운전자의 상태를 파악하는 전통적인 졸음 감지 방법들이 존재하지만 운전자들이 가지는 개개인의 특성을 모두 반영한 일반화 된 운전자 상태 인식에는 한계가 있다. 최근에는 운전자의 상태를 인식하기 위한 딥 러닝기반의 상태인식 연구들이 제안되었다. 딥 러닝은 인간이 아닌 기계가 특징을 추출하여 보다 일반화된 인식모델을 도출할 수 있는 장점이 있다. 본 연구에서는 운전자의 상태를 파악하기 위해 이미지와 PPG를 동시에 학습하여 기존 딥 러닝 방식보다 정확한 상태 인식 모델을 제안한다. 본 논문은 운전자의 이미지와 PPG 데이터가 졸음 감지에 어떤 영향을 미치는지, 함께 사용되었을 때 학습 모델의 성능을 향상시키는지 실험을 통해 확인하였다. 이미지만을 사용했을 때 보다 이미지와 PPG를 함께 사용하였을 때 3%내외의 정확도 향상을 확인했다. 또한, 운전자의 상태를 세 가지로 분류하는 멀티모달 딥 러닝 기반의 모델을 96%의 분류 정확도를 보였다.

Development of a Classification Model for Driver's Drowsiness and Waking Status Using Heart Rate Variability and Respiratory Features

  • Kim, Sungho;Choi, Booyong;Cho, Taehwan;Lee, Yongkyun;Koo, Hyojin;Kim, Dongsoo
    • 대한인간공학회지
    • /
    • 제35권5호
    • /
    • pp.371-381
    • /
    • 2016
  • Objective:This study aims to evaluate the features of heart rate variability (HRV) and respiratory signals as indices for a driver's drowsiness and waking status in order to develop the classification model for a driver's drowsiness and waking status using those features. Background: Driver's drowsiness is one of the major causal factors for traffic accidents. This study hypothesized that the application of combined bio-signals to monitor the alertness level of drivers would improve the effectiveness of the classification techniques of driver's drowsiness. Method: The features of three heart rate variability (HRV) measurements including low frequency (LF), high frequency (HF), and LF/HF ratio and two respiratory measurements including peak and rate were acquired by the monotonous car driving simulation experiments using the photoplethysmogram (PPG) and respiration sensors. The experiments were repeated a total of 50 times on five healthy male participants in their 20s to 50s. The classification model was developed by selecting the optimal measurements, applying a binary logistic regression method and performing 3-fold cross validation. Results: The power of LF, HF, and LF/HF ratio, and the respiration peak of drowsiness status were reduced by 38%, 22%, 31%, and 7%, compared to those of waking status, while respiration rate was increased by 3%. The classification sensitivity of the model using both HRV and respiratory features (91.4%) was improved, compared to that of the model using only HRV feature (89.8%) and that using only respiratory feature (83.6%). Conclusion: This study suggests that the classification of driver's drowsiness and waking status may be improved by utilizing a combination of HRV and respiratory features. Application: The results of this study can be applied to the development of driver's drowsiness prevention systems.

Development of a Sleep-driving Accident Prevention System based on pulse

  • Bae, Seung-Woo;Seo, Jung-Hwa
    • 한국인공지능학회지
    • /
    • 제6권1호
    • /
    • pp.11-15
    • /
    • 2018
  • The purpose of this study is to develop a pulsatile drowsiness detection system that can compensate the limitations of existing camera - based or breathing pressure sensor based Drowsiness driving prevention systems. A heart rate sensor mounted on the driver's finger and an alarm system that sounds when drowsiness is detected. The heart rate sensor was used to measure pulse changes in the wrist, and an alarm system based on the Arduino, which works in conjunction with the laptop, generates an audible alarm in the event of drowsiness. In this paper, we assume that the pulse rate of the drowsy state is 60 ~ 65 times / minute, which is the middle between the awake state and the sleep state. As a result of the experiment, the alarm sounded when the driver's pulse rate was in the drowsy pulse rate range. Based on these experiments, the drowsiness detection system was able to detect the drowsiness of the driver successfully in real time. A more effective drowsiness prevention system can be developed in the future by incorporating the results of the present study on a pulse-based drowsiness prevention system in an existing drowsiness prevention system.

Drowsiness Detection Method during Driving by using Infrared and Depth Pictures

  • You, Gang-chon;Park, Do-hyun;Kwon, Soon-kak
    • Journal of Multimedia Information System
    • /
    • 제5권3호
    • /
    • pp.189-194
    • /
    • 2018
  • In this paper, we propose the drowsiness detection method for car driver. This paper determines whether or not the driver's eyes are closed using the depth and infrared videos. The proposed method has the advantage to detect drowsiness without being affected by illumination. The proposed method detects a face in the depth picture by using the fact that the nose is closest to the camera. The driver's eyes are detected by using the extraction of harr-like feature within the detected face region. This method considers to be drowsiness if eyes are closed for a certain period of time. Simulation results show the drowsiness detection performance for the proposed method.

레티넥스 이론과 에지를 이용한 졸음 감지 시스템 개발 (Development of a Drowsiness Detection System using Retinex Theory and Edge Information)

  • 강수민;허경무;이승하
    • 제어로봇시스템학회논문지
    • /
    • 제22권9호
    • /
    • pp.699-704
    • /
    • 2016
  • In this paper, we propose a development method for a drowsiness detection system using retinex theory and edge information for vehicle safety. Detection of a drowsy state of a driver is very important because the drowsiness of driver is often the main cause of many car accidents. After acquiring an image of the entire face, we executed the pre-process step using the retinex theory. We then applied a technique for the detection of the white pixels using edge information. Experimental results showed that the proposed method improved the accuracy of detecting drowsiness to nearly 98%, and can be used to prevent a car accident caused by the driver's drowsiness.

졸음 운전자를 위한 졸음 각성 시스템의 개발에 관한 연구 (A Study on the Development of Drowsiness Warning System for a Drowsy Driver)

  • 정경호;김현석;이정수;김법중;김동욱;김남균
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 추계학술대회
    • /
    • pp.90-94
    • /
    • 1996
  • We studied the problem of driver's low vigilance state which is related to the one reason of traffic accidents. In this paper, we developed the drowsiness warning system for a drowsy driver. To extract the eyes and mouth from the driver's facial image in real time, a computer vision method was used. The eye blink duration and yawning were used as measurement parameters of drowsiness detection. When the drowsy state of a driver was detected, the driver was refreshed by the scent generator and the alarm. Also, the driver's bio-signal was acquired and analyzed to measure the vigilance state.

  • PDF

운전자 졸음방지 시스템 개발에 관한 연구 (A Study on the Driver's Drowsiness Protection System)

  • 김법중;박상수;오승곤;김인영;김남균
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.48-51
    • /
    • 1997
  • The purpose of this paper is to propose a method to protect the drowsiness of a driver. We measured the physiological signals, response time, and ace expression of the subjects in normal and drowsy state. Those data are used to establish the drowsiness index and fuzzy system. We employed the computer vision technology to extract and eye, track eyelids and measure the parameters related to drowsiness. These parameters were ed into the fuzzy system to decide the drowsiness level, When the drowsiness was detected, the fuzzy system generated warning signals which cons ist of sound and fragrance. Our system was available in decision of the drowsiness level and improvement of subjects' state.

  • PDF