• Title/Summary/Keyword: Driven Water

Search Result 610, Processing Time 0.03 seconds

Evaluation of Emergency Water Supply Plan for Block System of Water Network using WaterGEMS (WaterGEMS모형을 이용한 상수관망 블록시스템의 비상급수계획 평가)

  • Baek, Chun-Woo;Jun, Hwan-Don;Kim, Joong-Hoon;Yoo, Do-Guen;Lee, Kwang-Choon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.15-20
    • /
    • 2008
  • Hydraulic analysis of water distribution system can be divided into demand-driven analysis and pressure-driven analysis. Demanddriven analysis can give unrealistic results to simulate hydraulic conditions under abnormal operating conditions such as sudden demand increase and pipe failure. In Korea, demand-driven analysis has been used to establish emergency water supply plan in many water projects, but it is necessary to use pressure-driven analysis for establishment of emergency water supply plan. In this study, WaterGEMS model that was developed for pressure-driven analysis is used to evaluation of emergency water supply plan of J city. As the results, it was able to draw up more efficient plan for water supply in small block, and established emergency water supply plan of J city was determined to be appropriate.

Data-Driven Modeling of Freshwater Aquatic Systems: Status and Prospects (자료기반 물환경 모델의 현황 및 발전 방향)

  • Cha, YoonKyung;Shin, Jihoon;Kim, YoungWoo
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.611-620
    • /
    • 2020
  • Although process-based models have been a preferred approach for modeling freshwater aquatic systems over extended time intervals, the increasing utility of data-driven models in a big data environment has made the data-driven models increasingly popular in recent decades. In this study, international peer-reviewed journals for the relevant fields were searched in the Web of Science Core Collection, and an extensive literature review, which included total 2,984 articles published during the last two decades (2000-2020), was performed. The review results indicated that the rate of increase in the number of published studies using data-driven models exceeded those using process-based models since 2010. The increase in the use of data-driven models was partly attributable to the increasing availability of data from new data sources, e.g., remotely sensed hyperspectral or multispectral data. Consistently throughout the past two decades, South Korea has been one of the top ten countries in which the greatest number of studies using the data-driven models were published. Among the major data-driven approaches, i.e., artificial neural network, decision tree, and Bayesian model, were illustrated with case studies. Based on the review, this study aimed to inform the current state of knowledge regarding the biogeochemical water quality and ecological models using data-driven approaches, and provide the remaining challenges and future prospects.

Type Drive Analysis of Urban Water Security Factors

  • Gong, Li;Wang, Hong;Jin, Chunling;Lu, Lili;Ma, Menghan
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.784-794
    • /
    • 2020
  • In order to effectively evaluate the urban water security, the study investigates a novel system to assess factors that impact urban water security and builds an urban water poverty evaluation index system. Based on the contribution rates of Resource, Access, Capacity, Use, and Environment, the study adopts the Water Poverty Index (WPI) model to evaluate the water poverty levels of 14 cities in Gansu during 2011-2018 and uses the least variance method to evaluate water poverty space drive types. The case study results show that the water poverty space drive types of 14 cites fall into four categories. The first category is the dual factor dominant type driven by environment and resources, which includes Lanzhou, Qingyang, Jiuquan, and Jiayuguan. The second category is the three-factor dominant type driven by Access, Use, and Capability, which includes Longnan, Linxia, and Gannan. The third category is the four-factor dominant type driven by Resource, Access, Capability, and Environment, which includes Jinchang, Pingliang, Wuwei, Baiyin, and Zhangye. The fourth category is the five-factor dominant type, which includes Tianshui and Dingxi. The driven types impacting the urban water security factors reflected by the WPI and its model are clear and accurate. The divisions of the urban water security level supply a reliable theoretical and numerical basis for an urban water security early warning mechanism.

Abyssal Circulation Driven by a Periodic Impulsive Source in a Small Basin with Steep Bottom Slope with Implications to the East Sea

  • Seung, Young-Ho
    • Ocean and Polar Research
    • /
    • v.34 no.3
    • /
    • pp.287-296
    • /
    • 2012
  • In the theory of source-driven abyssal circulation, the forcing is usually assumed to be steady source (deep-water formation). In many cases, however, the deep-water formation occurs instantaneously and it is not clear whether the theory can be applied well in this case. An attempt is made to resolve this problem by using a simple reduced gravity model. The model basin has large depth change compared for its size, like the East Sea, such that isobaths nearly coincide with geostrophic contours. Deep-water is formed every year impulsively and flows into the model basin through the boundary. It is found that the circulation driven by the impulsive source is generally the same as that driven by a steady source except that the former has a seasonal fluctuation associated with unsteadiness of forcing. The magnitudes of both the annual average and seasonal fluctuations increase with the rate of deep-water formation. The problem can be approximated to that of linear diffusion of momentum with boundary flux, which well demonstrates the essential feature of abyssal circulation spun-up by periodic impulsive source. Although the model greatly idealizes the real situation, it suggests that abyssal circulation can be driven by a periodic impulsive source in the East Sea.

Data Driven Approach to Forecast Water Turnover (데이터 탐색 기법 활용 전도현상 예측모형)

  • Kwon, Sehyug
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.90-96
    • /
    • 2018
  • This paper proposed data driven techniques to forecast the time point of water management of the water reservoir without measuring manganese concentration with the empirical data as Juam Dam of years of 2015 and 2016. When the manganese concentration near the surface of water goes over the criteria of 0.3mg/l, the water management should be taken. But, it is economically inefficient to measure manganese concentration frequently and regularly. The water turnover by the difference of water temperature make manganese on the floor of water reservoir rise up to surface and increase the manganese concentration near the surface. Manganese concentration and water temperature from the surface to depth of 20m by 5m have been time plotted and exploratory analyzed to show that the water turnover could be used instead of measuring manganese concentration to know the time point of water management. Two models for forecasting the time point of water turnover were proposed and compared as follow: The regression model of CR20, the consistency ratio of water temperature, between the surface and the depth of 20m on the lagged variables of CR20 and the first lag variable of max temperature. And, the Box-Jenkins model of CR20 as ARIMA (2, 1, 2).

Numerical Prediction of Tidal Current due to the Density and Wind-driven Current in Yeong-il Bay (하구밀도류와 취송류가 영일만 해수유동에 미치는 영향)

  • YOON HAN-SAM;LEE IN-CHEOL;RYU CHEONG-RO
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.22-28
    • /
    • 2004
  • This study constructed a 3D real-time numerical model that predicts the water quality and movement characteristics of the inner bay, considering the characteristics of the wind-driven current and density current in estuaries, generated by the river discharge from the Hyeong-san river and oceanic water of the Eastern sea. The numerical model successfully calculated the seawater circulation current of Yeong-il Bay, using the input conditions oj the real-time tidal current, river discharge, and weather conditions during March 2001. This study also observed the wind-driven current and density current in estuaries that are effected by the seawater circulation pattern of the inner bay. We investigated and analyzed each impact factor, and its relationship to the water quality of Yeong-il bay.

Reduction of bacterial regrowth in treated water by minimizing water stagnation in the filtrate line of a gravity-driven membrane system

  • Yi, JongChan;Lee, Jonghun;Jung, Hyejin;Park, Pyung-Kyu;Noh, Soo Hong
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.17-23
    • /
    • 2019
  • This study monitored changes in the level of heterotrophic bacteria in the filtrate and investigated the effect of stagnant water on it, using a batch-operated, gravity-driven membrane system for household water treatment. The filtration test was carried out in the presence and absence of stagnant water in the filtrate line. The results showed that stagnant water accelerated the heterotrophic bacteria levels, measured by heterotrophic plate count, even though the heterotrophic plate count of the filtrate finally increased up to $10^5CFU/mL$ regardless of the presence of stagnant water. When the change in heterotrophic plate count of a batch was monitored over filtration time, heterotrophic plate count of the filtrate rapidly decreased within 5 min for each batch filtration. Biofilm formation on the filtrate line was observed in the presence of stagnant water. The biofilm fully covered the filtrate line and contained numerous microorganisms. During storage after filtration, heterotrophic plate count increased exponentially. To improve the filtrate quality of a filtration-based household water treatment system, therefore, the stagnant water in the filtrate line should be minimized, the filtrate produced at the first 5 min is recommended not to be used as potable water, and the storage of filtrate should be avoided.

Estimating the Reliability of Water Distribution Systems Using HSPDA Model and Distance Measure Method (HSPDA모형과 거리척도방법을 이용한 상수관망의 신뢰성분석)

  • Baek, Chun-Woo;Jun, Hwan-Don;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.9
    • /
    • pp.769-780
    • /
    • 2010
  • Topological and hydraulic assessments to examine whether required demand and pressure are satisfied and using these assessed results as a criteria have been general methodology for reliability assessment of water distribution systems. However, many of existing studies that used nodal pressure calculated by hydraulic assessment for reliability assessment have two major issues to be solved. The one is that demand-driven analysis was used for hydraulic assessment and the other is that serviceability was not considered for reliability assessment. In addition, all of the studies used pressure-demand analysis which is suitable to hydraulic analysis for water distribution systems under abnormal operating condition considered only available nodal demand for reliability assessment. This means that advantages which can be obtained by pressure-driven analysis are not used properly and efficiently. In this study, new methodology for reliability assessment of water distribution systems using HSPDA model and distance measure method is suggested. This methodology considers both nodal pressure and nodal available demand for reliability assessment. Suggested methodology is applied to two water distribution systems to show its applicability and application results are compared with existing study.