• Title/Summary/Keyword: Drive Test

Search Result 862, Processing Time 0.024 seconds

The Stimulus Factors Influencing Intention to Participate in Shopping during the Distribution of the 12.12 Online Shopping Festivals in Malaysia

  • MAHMUDDIN, Yasmin;ABDULLAH, Mazilah;RAMDAN, Mohamad Rohieszan;MOHD ANIM, Nur Aqilah Hazirah;ABD AZIZ, Nurul Ashykin;ABD AZIZ, Nurul Aien;YAHAYA, Rusliza;ABD AZIZ, Noreen Noor
    • Journal of Distribution Science
    • /
    • v.20 no.8
    • /
    • pp.93-103
    • /
    • 2022
  • Purpose: Online shopping festivals have quickly become the newest trend in online shopping worldwide due to the COVID-19 pandemic. This has led to marketing distribution channels that traditionally emphasized traditional techniques having turned to electronic commerce platforms. Although the pandemic scenario encourages online purchasing, other factors, such as the influence of participation intention to shop during the Online Shopping Festival, must also be considered. Research design, data and methodology: Multiple linear regression analysis was used to test the hypothesis based on data from 121 respondents who are actively involved with online shopping activities in Klang Valley, Selangor. Results: The results of this study show that promotion categories and the perceived influence of mass participation have a significant influence on participation intention. Meanwhile, the perceived temptation of price promotion and perceived fun promotional activities did not significantly influence participation intention. Conclusions: Theoretically, this study contributes to the literature by using the Theory of Planned Behavior and Stimulus-Response models to explain the factors that drive participation intention for online shopping. In practice, this study attracts and encourages customers to shop during the festival day because various attractive promotions are offered by sellers in Malaysia.

Design Verification of an E-driving System of a 44 kW-class Electric Tractor using Agricultural Workload Data (농작업 부하데이터를 활용한 44 kW급 전기구동 트랙터의 E-driving 시스템 설계 검증)

  • Baek, Seung-Yun;Baek, Seung-Min;Jeon, Hyeon-Ho;Lee, Jun-Ho;Kim, Wan-Soo;Kim, Yong-Joo
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.36-45
    • /
    • 2022
  • The aim of this study was to verify an E-driving system of a 44 kW-class electric tractor using agricultural workload data. Workload data were acquired during field test (plow tillage, rotary tillage, loader operation, field driving, asphalt driving) using a conventional tractor with a load measurement system. These workload data were converted to data of a 44 kW-class tractor based on the load factor of the engine. These data were used to verify the design of the E-driving system of an electric tractor. High-load operations such as plow tillage, rotary tillage, and loader operation could be performed at stage L and stage M. High-speed operation (asphalt driving) could be effectively performed at stage H using a rated rotational speed of the motor. As a result, the E-driving system of the electric tractor was possible to perform all major agricultural operations according to gear stages of range shift. Based on results of this research, we plan to develop an electric tractor equipped with an E-driving system and conduct research on actual vehicle verification in the future.

Evaluation of SPACE Code Prediction Capability for CEDM Nozzle Break Experiment with Safety Injection Failure (안전주입 실패를 동반한 제어봉구동장치 관통부 파단 사고 실험 기반 국내 안전해석코드 SPACE 예측 능력 평가)

  • Nam, Kyung Ho
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.5
    • /
    • pp.80-88
    • /
    • 2022
  • The Korean nuclear industry had developed the SPACE (Safety and Performance Analysis Code for nuclear power plants) code, which adopts a two-fluid, three-field model that is comprised of gas, continuous liquid and droplet fields and has the capability to simulate three-dimensional models. According to the revised law by the Nuclear Safety and Security Commission (NSSC) in Korea, the multiple failure accidents that must be considered for the accident management plan of a nuclear power plant was determined based on the lessons learned from the Fukushima accident. Generally, to improve the reliability of the calculation results of a safety analysis code, verification is required for the separate and integral effect experiments. Therefore, the goal of this work is to verify the calculation capability of the SPACE code for multiple failure accidents. For this purpose, an experiment was conducted to simulate a Control Element Drive Mechanism (CEDM) break with a safety injection failure using the ATLAS test facility, which is operated by Korea Atomic Energy Research Institute (KAERI). This experiment focused on the comparison between the experiment results and code calculation results to verify the performance of the SPACE code. The results of the overall system transient response using the SPACE code showed similar trends with the experimental results for parameters such as the system pressure, mass flow rate, and collapsed water level in component. In conclusion, it can be concluded that the SPACE code has sufficient capability to simulate a CEDM break with a safety injection failure accident.

Sensory Evaluation of Friction and Viscosity Rendering with a Wearable 4 Degrees of Freedom Force Feedback Device Composed of Pneumatic Artificial Muscles and Magnetorheological Fluid Clutches

  • Okui, Manabu;Tanaka, Toshinari;Onozuka, Yuki;Nakamura, Taro
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.77-83
    • /
    • 2021
  • With the progress in virtual reality technology, various virtual objects can be displayed using head-mounted displays (HMD). However, force feedback sensations such as pushing against a virtual object are not possible with an HMD only. Focusing on force feedback, desktop-type devices are generally used, but the user cannot move in a virtual space because such devices are fixed on a desk. With a wearable force feedback device, users can move around while experiencing force feedback. Therefore, the authors have developed a wearable force feedback device using a magnetorheological fluid clutch and pneumatic rubber artificial muscle, aiming at presenting the elasticity, friction, and viscosity of an object. To date, we have developed a wearable four-degree-of-freedom (4-DOF) force feedback device and have quantitatively evaluated that it can present commanded elastic, frictional, and viscous forces to the end effector. However, sensory evaluation with a human has not been performed. In this paper, therefore, we conduct a sensory evaluation of the proposed method. In the experiment, frictional and viscous forces are rendered in a virtual space using a 4-DOF force feedback device. Subjects are asked to answer questions on a 1- to 7-point scale, from 1 (not at all) to 4 (neither) to 7 (strongly). The Wilcoxon signed rank test was used for all data, and answer 4 (neither) was used as compared standard data. The experimental results confirmed that the user could feel the presence or absence of viscous and frictional forces. However, the magnitude of those forces was not sensed correctly.

Transmission Efficiency of Dual-clutch Transmission in Agricultural Tractors (농업용 트랙터 듀얼 클러치 변속기의 동력전달 효율 분석에 관한 연구)

  • Moon, Seok Pyo;Moon, Sang Gon;Kim, Jae Seung;Sohn, Jong Hyeon;Kim, Yong Joo;Kim, Su Chul
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.43-50
    • /
    • 2022
  • The aim of this study was to conduct basic research on the development of a dual-clutch transmission(DCT) and automatic transmission for agricultural tractors. The DCT layout and the DCT simulation model were developed using commercial software. Power transmission efficiency of the DCT and component power loss were analyzed to verify the developed simulation model. Power loss analysis of the components was conducted according to previous studies and ISO(International Organization for Standardization) standards. The power transmission efficiency of the DCT simulation model was 68.4-91.5% according to the gear range. The power loss in the gear, bearing, and clutch DCT system components was 0.75-1.49 kW, 0.77-2.99 kW, and 5.24-10.52 kW, respectively. The developed simulation model not include the rear axle, differential gear, final reduction gear. Therefore actual power transmission efficiency of DCT will be decreased. In a future study, an actual DCT can be developed through the simulation model in this study, and optimization design of DCT can be possible by comparing simulation results and actual vehicle test.

Analysis of Engine Load Factor for a 78 kW Class Agricultural Tractor According to Agricultural Operations (농작업에 따른 78 kW급 농업용 트랙터 엔진 부하율 분석)

  • Baek, Seung Min;Kim, Wan Soo;Baek, Seung Yun;Jeon, Hyeon Ho;Lee, Dae Hyun;Kim, Hyung Kweon;Kim, Yong Joo
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.16-25
    • /
    • 2022
  • The purpose of this study was to calculate and analyze the engine load factor of major agricultural operations using a 78 kW class agricultural tractor for estimating the emission of air pollutants and greenhouse. Engine load data were collected using controller area network (CAN) communication. Main agricultural operations were selected as plow tillage (PT), rotary tillage (RT), baler operation (BO), loader operation (LO), driving on soil (DS), and driving on concrete (DC). The engine power was calculated using the measured engine load data. A weight factor was applied to load factor for considering usage ratio according to agricultural operations. Weight factors for different agricultural operations were calculated to be 27.4%, 32.9%, 17.5%, 7.7%, 4.5%, and 10.0% for PT, RT, BO, LO, DS, and DC, respectively. As a result of the field test, load factors were 0.74, 0.93, 0.41, 0.23, 0.27, and 0.21 for PT, RT, BO, LO, DS, and DC, respectively. The engine load factor was the highest for RT. Finally, as a result of applying the weight factor for usage ratio of agricultural operations, the integrated engine load factor was estimated to be 0.63, which was about 1.31 times higher than the conventional applied load factor of 0.48. In future studies, we plan to analyze the engine load factor by considering various horsepower and working conditions of the tractor.

Design and Performance Evaluation of a Variable Control Type Fresh Corn Harvester (가변 제어형 식용 풋옥수수 수확기 설계 및 성능평가)

  • Jea Keun Woo;Il Su Choi;Young Keun Kim;Yong Choi;Duck Kyu Choi;Ho Seop Lee;Ji Tae Kim;Young Jun Park;Dong jae Kim
    • Journal of Drive and Control
    • /
    • v.20 no.2
    • /
    • pp.40-46
    • /
    • 2023
  • Fresh corn, one of the main food crops, must be harvested by hand. A harvest mechanization technology is required. In this study, a tractor-attached harvester was designed and manufactured to sequentially perform stem reaping, fresh corn detaching, and collecting. The(harvester was designed so that the main device could operate through a hydraulic pump and a generator could be operated through the tractor's PTO. Factor tests were conducted according to cultivars (Ilmichal, Super sweet corn) and working speed (0.12 m/s, 0.17, 0.22). After the factor test, detached corns ratio, collected corns ratio, and damaged corns ratio were analyzed and harvest performance was evaluated. Harvesting performance was good for super sweet corn. Considering operation efficiency, 0.22 m/s was judged to be an appropriate working speed. It was found that it took two hours to work an area of 10 a.

Tele-operation System of Unmaned Fire Truck for Real-time Fire Suppression (실시간 화재진압을 위한 원격조종 무인소방 시스템)

  • Kang, Byoung Hun;Lee, Seung-Chol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.1-6
    • /
    • 2022
  • In this research, we suggest a real-time tele-driving system for unmanned fire truck control using the LTE communication system. The operator located in the safe area could drive the unmaned fire truck by implementing the secure tele-operation in case of the emergencies and disaster situation. A prototype of the unmaned fire truck was developed with a fire canon, a high pressure pump, a ball valve and a horse reel. The effect of time delay and FPS was quantified depending on the image sizes and the effective system for realtime tele-operation was suggested. To verify the suggested system, the test was performed between an operator and an unmanned fire truck which is approximately 30km apart. In this research, the immersion tele-driving system is suggested for real-time fire suppression with a 120ms time delay using LTE communication.

Study of Risky Driving Decision Device using DGPS/RTK (DGPS/RTK를 이용한 위험운전 판단장치 성능검증에 관한 연구)

  • Oh, JuTaek;Lee, SangYong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3D
    • /
    • pp.303-311
    • /
    • 2010
  • There have been various forms of systems such as a digital speedometer or a black box etc. to meet the social requirement for reducing traffic accidents and safe driving. However that systems are based on after-accident vehicle data, there is limit to prevent the accident before. So in our previous research, by storing, analyzing the Vehicle-dynamic information coming from driver's behavior, we are developing the decision-device which could provide driver with Alerting-Information in real-time to enhance the driver's safety drive. but the performance valuation is not yet executed. Finally, this study developed positional recognition system by using the DGPS for pre-developed risky driving decision device. The result of test analyzed with the same that the aggregated vehicle dynamics data in DGPS and dangerous risky driving decision device. If the performance of risky driving decision device is verified by precisely positional recognition system, the risky driving management of vehicle would be effected.

Development of the Path Generation and Control System for Unmanned Weeding Robot in Apple Orchards (사과 과원 무인 제초를 위한 작업 경로 생성 및 경로 제어 시스템 개발)

  • Jintack Jeon;Hoseung Jang;Changju Yang;Kyoung-do Kwon;Youngki Hong;Gookhwan Kim
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • Weeding in orchards is closely associated with productivity and quality. The customary weeding process is both labor-intensive and time-consuming. To solve the problems, there is need for automation of agricultural robots and machines in the agricultural field. On the other hand, orchards have complicated working areas due to narrow spaces between trees and amorphous terrain. Therefore, it is necessary to develop customized robot technology for unmanned weeding work within the department. This study developed a path generation and path control method for unmanned weeding according to the orchard environment. For this, the width of the weeding span, the number of operations, and the width of the weeding robot were used as input parameters for the orchard environment parameters. To generate a weeding path, a weeding robot was operated remotely to obtain GNSS-based location data along the superheated center line, and a driving performance test was performed based on the generated path. From the results of orchard field tests, the RMSE in weeding period sections was measured at 0.029 m, with a maximum error of 0.15 m. In the steering period within row and steering to the next row sections, the RMSE was 0.124 m, and 0.047 m, respectively.