• Title/Summary/Keyword: Drive Logic

Search Result 240, Processing Time 0.027 seconds

Design of MYNAMIC CMOS ARRAY LOGIC (DYNAMIC CMOS ARRAY LOGIC의 설계)

  • 한석붕;임인칠
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.10
    • /
    • pp.1606-1616
    • /
    • 1989
  • In this paper, the design of DYNAMIC CMOS ARRAY LOGIC which has both advantages of dynamic CMOS and array logic circuits is proposed. The major components of DYNAMIC CMOS ARRAY LOGIC are two-stage dunamic CMOS circuits and an internal clock generator. The function block of dynamic CMOS circuits is realized as a parallel interconnection of NMOS transistors. Therefore the operating speed of DYNAMIC CMOS ARRAY LOGIC is much faster than the one of the conventional dynamic CMOS PLAs and static CMOS PLA. Also, the charge redistribution problem by internl delay is solved. The internal clock generator generates four internal clocks that drive all the dynamic CMOS circuits. During evaluation, two clocks of them are delayed as compared with others. Therefore the race problem is completoly eliminated. The internal clock generator also prevents the reduction of circuit output voltage and noise margin due to leakage current and charge coupling without any penalty in circuit operating speed or chip area utilization.

  • PDF

Study for Digital Logic Circuit Using Resonant Tunneling Diodes (공명투과다이오드를 이용한 논리회로의 응용 연구)

  • 추혜용;박평운;이창희;이일항
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.2
    • /
    • pp.75-80
    • /
    • 1994
  • AlAs/GaAs/AlAs RTDs(Resonant Tunneling Diodes) are fabricated and current-voltage properties of them are measured. At room temperature, peak to valley ratio is 2.4 NOT.AND.OR logic gates and Flip-Flop are fabricated using the bistable characteristics of RTDs. Although NOT.AND.OR logic gates need 5~8 transistors. only one RTD is sufficient to fabricate the logic gates. Since the switching time is very short(<10$^12$sec), it is possible to drive the semiconductor circuits fast and integrate them very large. And it is convinced the possibility of integrating RTDs to multilevel logic circuits by observing two peaks of similar current in the serial connection of two RTDs.

  • PDF

A Fuzzy Predictive Sliding Mode Control for High Performance Induction Motor Position Drives

  • Bayoumi E.H.E.;Nashed M.N.F.
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.20-28
    • /
    • 2005
  • This paper presents a fuzzy predictive sliding mode control for high performance induction motor position drives. A new simplified inner-loop sliding-mode current control scheme based on a nonlinear mathematical model of an induction motor is introduced. Novel predictive fuzzy logic PI and PID controllers are used in speed and position loops, respectively. Sliding-mode current controllers and fuzzy predictive logic controllers are designed based on indirect vector control. The overall system performance is examined under different dynamic operating conditions. The performance of the drive system is robust and stable, and insensitive to parameters and operating condition variations even though non-exact system parameters are used in the implementation of the proposed controllers.

Characteristics of Analog Encoder for SRM Drive

  • Park, Sung-Jun;Ahn, Jin-Woo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.12B no.1
    • /
    • pp.31-36
    • /
    • 2002
  • In a switched reluctance motor drive, it is important to synchronize the stator phase excitation with the rotor position; therefore, the position of rotor is an essential information. Although optical encoders or resolvers are used to provide the position information, these sensors are expensive. Moreover, in the high-speed region, switching angles are fluctuated back and forth out of the preset value, which is caused by the sampling period of the microprocessor. In this paper, a low cost analog encoder suitable for practical applications is proposed. And the control algorithm to generate switching signals using a simple digital logic is presented. The validity of the proposed analog encoder with a proper logic controller is verified from the experiments.

SVPWM System for Induction Motor Drive Using ASIC (ASIC을 이용한 유도전동기 구동용 SVPWM 시스템)

  • Lim, Tae-Yun;Kim, Dong-Hee;Kim, Jong-Moo;Kim, Joong-Ki;Kim, Min-Heui
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.103-108
    • /
    • 1999
  • The paper describes a implementation of space vector pulse-width modulation voltage source inverter and interfacing of DSP using field programmable gate array(FPGA) for a induction motor vector control system. The implemented chip is included logic circuits for SVPWM, dead time compensation and speed detection using Quick Logic, QLl6X24B. The maximum operating frequency and delay time can be set to 110MHz and 6 nsec. The designed Application Specific Integrated Circuit(ASIC) for SVPWM can be incorporated with a digital signal processing to provide a simple and effective solution for high performance induction motor drives with a voltage source inverter. Simulation and implementation results are shown to verify the usefulness of ASIC in a motor drive system and power electronics applications.

  • PDF

The Performance Analysis of the DDFS to drive PLL (PLL을 구동하기 위한 DDFS의 성능분석)

  • 손종원;박창규;김수욱
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1283-1291
    • /
    • 2002
  • In this paper, the PLL driven by the DDFS is designed on the schematic using the Q-logic cell based library and is implemented using FPGA QL32 x16B. The measurement results of the frequency synthesizer switching speed were agreement with a register. The simulated results show that the clock delay was generated after eleven clock and if input is random, It has influence on output DA converter has to be very extensive. Therefore, the DDFS used noise shaper to drive PLL by regular interval for input state. Also the bandwidth of DA converter very extensive, the simulation shows that the variation of small input control word is better than the switching speed of PLL.

High voltage MOSFET fabricated by using a standard CMOS logic process to drive the top emission OLEDs in silicon-based OELDs

  • Lee, Cheon-An;Kwon, Hyuck-In;Jin, Sung-Hun;Lee, Chang-Ju;Lee, Myung-Won;Kyung, Jae-Woo;Cho, Il-Whan;Lee, Jong-Duk;Park, Byung-Gook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.981-983
    • /
    • 2003
  • Using the conventional standard CMOS logic process, the high voltage MOSFET to drive top emission OLEDs was fabricated for the silicon-based organic electroluminescent display. The drift region of the conventional high voltage MOSFET was implemented by the n-well of the logic process. The measurement result shows a good saturation characteristic up to 50 V without breakdown phenomena.

  • PDF

Adaptive Fuzzy Controller for High Performance of Induction Motor Drive (유도전동기 드라이브의 고성능 제어를 위한 적응 퍼지제어기)

  • Lee, Jung-Ho;Ko, Jae-Sub;Choi, Jung-Sik;Kim, Jong-Kwan;Park, Ki-Tae;Park, Byung-Sang;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.152-154
    • /
    • 2006
  • This paper investigates the adaptive control of a fuzzy logic based speed and flux controller for a vector controlled induction motor drive. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The validity of the proposed adaptive fuzzy controller is confirmed by performance results for induction motor drive system

  • PDF

High Performance On Off Angle Control of SRM Using Linear Encoder (선형 엔코더를 이용한 SRM의 고정밀 온, 오프 각 제어)

  • Lee, Yeong-Jin;Park, Seong-Jun;Park, Han-Ung;Lee, Man-Hyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.61-67
    • /
    • 2000
  • In switched reluctance motor(SRM) drive, it is necessary to synchronize the stator phase excitation with the rotor position. Therefore the rotor position information is an essential. Usually optical encoders or resolvers are used to provide the rotor position information. These sensors are expensive and are not suitable for high speed operation. In general, the accuracy of the switching angle is dependent upon the resolution of the encoder and the sampling period of the microprocessor. But the region of high speed, switching angles are fluctuated back and forth from the preset values, which are cause by the sampling period of the microprocessor. Therefore, the low cost linear encoder suitable for the practical and stable SRM drive is proposed and the control algorithm to provide the switching signals using the simple digital logic circuit is also presented in this paper. It is verified from the experiments that the proposed encoder and logic controller can be a powerful candidate for the practical low cost SRM drive.

  • PDF

A PWM method using fuzzy logic for brushless motor drives (브러시리스 전동기 제어를 위한 퍼지제어 PWM)

  • Chin, Myung-Churl;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1235-1237
    • /
    • 1992
  • In this paper, a new PWM method and estimating means of rotor position angles for BLDC motor drive are presented. The rotor position angles is predicted by calculated rotor flux from the stator voltage and current signals. The current control PWM using fuzzy logic is also suggested. Performance of the proposed controller is observed through a simulation.

  • PDF