• Title/Summary/Keyword: Drinking water use

Search Result 237, Processing Time 0.027 seconds

Production of Hard Water From Seawater Using Electrodialysis (해수로부터 전기투석 장치를 이용한 고경도 수 제조)

  • Ji, Ho;Kim, Kwang Soo;Moon, Deok Soo;Kim, Hyeon Ju;Lee, Ho Saeng
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.1
    • /
    • pp.9-14
    • /
    • 2015
  • There are various ions in seawater. In order to use seawater as the drinking water, some elements are to be concentrated and other elements are to be removed. To obtain these characteristics using seawater, it is necessary to adjust seawater quality. Because calcium and magnesium are especially healthful to human bodies, it is required to concentrate these elements. In this study, the technology to obtain the hard water from seawater by electerodialysis was investigated. After concentrated water was produced using nanofiltration membranes, sodium chloride was eliminated from the concentrated water by electrodialysis. The hard water production from seawater was successfully achieved using electrodialysis in this study.

Evaluation of Natural Organic Matter Treatability and Disinfection By-Products Formation Potential using Model Compounds (정수처리 공정에서 모델 물질들을 이용한 천연유기물질 처리능 및 소독부산물 생성능 평가)

  • Son, Hee-Jong;Jung, Jong-Moon;Choi, Jin-Taek;Son, Hyung-Sik;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1153-1160
    • /
    • 2013
  • While a range of natural organic matter (NOM) types can generate high levels of disinfection by-products (DBPs) after chlorination, there is little understanding of which specific compounds act as precursors. Use of eight model compounds allows linking of explicit properties to treatability and DBP formation potential (DBPFP). The removal of model compounds by various treatment processes and their haloacetic acid formation potential (HAAFP) before and after treatment were recorded. The model compounds comprised a range of hydrophobic (HPO) and hydrophilic (HPI) neutral and anionic compounds. On the treatment processes, an ozone oxidation process was moderate for control of model compounds, while the HPO-neutral compound was most treatable with activated carbon process. Biodegradation was successful in removing amino acids, while coagulation and ion exchange process had little effect on neutral molecules. Although compared with the HPO compounds the HPI compounds had low HAAFP the ozone oxidation and biodegradation were capable of increasing their HAAFP. In situations where neutral or HPI molecules have high DBPFP additional treatments may be required to remove recalcitrant NOM and control DBPs.

A review on status of organic micropollutants from sewage effluent and their management strategies (하수 유래 미량오염물질 현황과 관리 방안 고찰)

  • Choi, Sangki;Lee, Woongbae;Kim, Young-Mo;Hong, Seok-Won;Son, Heejong;Lee, Yunho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.3
    • /
    • pp.205-225
    • /
    • 2021
  • Due to the large-scale production and use of synthetic chemicals in industralized countries, various chemicals are found in the aquatic environment, which are often termed as micropollutants. Effluents of municipal wastewater treatment plants (WWTPs) have been identified as one of the major sources of these micropollutants. In this article, the current status of occurrence and removal of micropollutants in WWTPs and their management policies and options in domestic and foregin countries were critically reviewed. A large number of pharmaceuticals, personal care products, and industrial chemicals are found in WWTPs' influent, and are only partially removed by current biological wastewater treatment processes. As a result, some micropollutants are present in WWTPs' effluents, which can negatively affect receiving water quality or drinking water source. To better understand and assess the potential risk of micropollutants, a systematic monitoring framework including advanced analytical tools such as high resolution mass spectrometry and bioanalytical methods is needed. Some Western European countries are taking proactive approach to controlling the micropollutants by upgrading WWTP with enahnced effluent treatment processes. While this enahnced WWTP effluent treatment appears to be a viable option for controlling micropollutant, its implementation requires careful consideration of the technical, economical, political, and cultural issues of all stakeholders.

Analysis of the Response of School Food Service Operations to the COVID-19 Pandemic in 2020-2021 (2020~2021년 코로나바이러스감염증-19 대응을 위한 학교급식 운영 현황)

  • Jin-Uk Kwon;Hae-Lim Cho;Chang-Geun Lee;Seo-Jin Kim;Hae-Young Lee;Soo-Youn Kim
    • Journal of the Korean Society of Food Culture
    • /
    • v.38 no.3
    • /
    • pp.163-175
    • /
    • 2023
  • This study aimed to examine the operations of school food services to prevent the spread of coronavirus disease 2019 (COVID-19) in schools nationwide. The survey data on school food service operations targeting nutrition teachers and nutritionists at 1,023 schools in 2020 and 1,177 schools in 2021 were used. The year 2021 saw an increase compared to 2020 in the following: 'average days to be served with meals for a year (144.5 vs. 184.7)', 'provided meals to all students (92.3% vs. 96.6%)', 'utilization of additional staff for foodservice assistance (33.4% vs. 38.8%)', 'installation of partitions (61.2% vs. 83.8%)', 'provision of general diet (96.1% vs. 99.1%)', and 'use of kitchen utensils (91.3% vs. 95.1%)', 'use of cafeteria water cup (9.9% vs. 31.0%)' and 'use of drinking water in school (46.8% vs. 52.1%)'. Compared to 2020, in 2021, it was confirmed that the school food service operations stabilized due to the increase in the normal school attendance rate and that systems were in place for operations during the COVID-19 pandemic. In the future, it will be necessary to develop manuals and special recipes necessary for responding to infectious diseases, and to operate a manpower pool that can quickly find replacement personnel if required.

Accelerometry of Upper Extremity During Activities of Daily Living in Healthy Adults (정상인에서 일상생활활동 수행시 상지의 가속도 분석)

  • Kim, Tae-Hoon;Park, Kyung-Hee
    • The Journal of Korean society of community based occupational therapy
    • /
    • v.4 no.1
    • /
    • pp.23-31
    • /
    • 2014
  • Objective : The objectives of this study were to compare the variables from Fitmeter accelerometer with them from CMS-70P(Zebris Medizintechnik Gmbh, Germany) and to suggest the availability the accelerometer in the field of occupational therapy. Methods : Twenty participants performed calling, drinking water, washing face and spooning and we measured Sum of Single Vector Magnitude(SSVM) and range of motion(ROM) on the wrist and elbow joints. Results :With respect to the wrist and elbow joints, SSVM and ROM differed significantly according to the task(calling, drinking water, washing face and spooning)(p<.001; p<.001; p<.001; p<.001). As for the wrist joint, SSVM and ROM did not show the significant correlation(p>.05) but as for the elbow joint, SSVM and ROM did show the significant correlation according to the task(p<.01; p<.001; p<.01; p<.05). With regard to the SVM-difference of wrist and elbow joints, calling and washing showed the significant difference (p<.001; p<.05) but drinking and spooning did not show the significant difference(p>.05; p>.05). Conclusion : We suggest that Fitmeter accelerometer would be use to record the kinematic variables during performance of ADL and it can compensate the function of CMS-70P as for the elbow joint than the wrist joint.

  • PDF

Risk Assessment of Arsenic-Contaminated Groundwater in Multiple Scenarios in a Rural Area of Gyeongnam Province, Korea (경남 농촌 지역 비소 오염 지하수의 시나리오별 위해성 평가)

  • Oh, Serim;Lee, Jin-Yong;Moon, Sang-Ho;Jang, Jiwook;Jeong, Eunju
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.437-448
    • /
    • 2022
  • This work aims to assess the threat to human health of hazardous materials in groundwater that is used domestically and for drinking. Two distinct sub-assessments are considered: cancer and non-cancer risk. The studied groundwater is in an agricultural area of Gyeongnam Province, Korea, and is contaminated by arsenic at a mean level of 16.27 ㎍/L, far greater than the WHO guideline (10 ㎍/L for drinking water). We collected groundwater data from the National Groundwater Information Center (gims.go.kr) and assessed the risk to human health following the methodology of the United States Environmental Protection Agency. We considered three exposure scenarios: domestic use (scenario 1) and drinking use with different doses (scenarios 2 and 3). Scenario 1 had a median hazard quotient (HQ) of 0.77 and a cancer risk (CR) of 0.013. Scenario 2 had a median HQ of 0.08 and a CR of 3.69 × 10-5, and the values for scenario 3 were 0.11 and 4.82 × 10-5, respectively. Scenario 1 is likely the most hazardous to human health. Further study of the origin of arsenic in groundwater in the study area is required, as are remedial measures to mitigate its health effects.

Calculation of Land Category Area and Pollution Loads according to Real Land Usage using High Resolution Satellite Image (고해상도 영상자료를 이용한 실제토지이용에 따른 지목면적 및 부하량 산정)

  • Park, Jae Hong;Lee, Su Woong;Park, Ju Hyun;Rhew, Doug Hee;Jung, Dong Il;Choi, Hye Mi;Jeon, Woo Song
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.193-204
    • /
    • 2009
  • The study was conducted investigation on land of D-dong in N city which is an urban area and D myeon of N city which is a suburban area, based on high resolution satellite image, to find out actual land usage. As for D-dong in N city, different rate between actual usage and official land information was 0.5~4.8% in terms of 5 major land types (paddy field, farm, ground, forest, and others). D myeon in N city posted 1.4~8.4%, which is higher than that of its counterpart. As for unit load, "land" which is large in terms of load presented a big difference between official information and actual usage. On the other hand, the levels of paddy, field, forest and others posted only small changes in load. In case of T-P, in particular, unit of each land type is lower than BOD and T-N, showing almost no changes in pollution loads.

Characteristics of Washed-off Pollutants and Dynamic EMCs in a Parking Lot and a Bridge during Storms (주차장 및 교량지역의 강우유출수내 비점오염물질의 특성 비교 및 동적 EMCs)

  • Kim, Lee-Hyung;Lee, Seonha
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.248-255
    • /
    • 2005
  • Since the water quality of drinking water sources has been recognized as a big issue, the ministry of Environment in Korea is designing the total maximum daily load (TMDL) program for 4 major large rivers. The TMDL program can be successfully performed as controling the nonpoint pollutants from watershed area near the river. Of the various landuses in nonpoint pollution, parking lots and bridges are stormwater intensive landuses because of high imperviousness and high pollutant mass emissions from vehicular activities. Vehicle emissions from those areas include different pollutants such as heavy metals, oil and grease and particulates from sources such as fuels, brake pad and tire wear, etc. Especially the pollutant washed-off from the landuses are directly affecting to the river water quality. Therefore this research was conducted to understand the magnitude and nature of the stormwater emissions with the goal of quantifying stormwater pollutant concentrations and mass emission rates of pollutants from parking lot and bridges in Korea. In Kongju city areas, two monitoring sites were equipped with an automatic rainfall gages and an automatic flow meter for accumulating the useful data such as rainfall, water quality and runoff flow. This manuscripts will show the concentration changes during storm duration and EMCs to characterize the concentration profiles in different land uses. Also the first flush criteria will be suggested using dynamic EMCs. The definition of dynamic EMC is a new approach explaining the relationship of EMC and first flush effect.

Application of Response Surface Methodology to Optimize the Performance of the Electro-Chlorination Process (전기분해 염소소독공정의 반응표면분석법을 이용한 차아염소산나트륨 발생 최적화)

  • Ju, Jaehyun;Park, Chan-gyu
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.3
    • /
    • pp.167-175
    • /
    • 2022
  • Background: Disinfection is essential to provide drinking water from a water source. The disinfection process mainly consists of the use of chlorine and ozone, but when chlorine is used as a disinfectant, the problem of disinfection by-products arises. In order to resolve the issue of disinfection by-products, electro-chlorination technology that produces chlorine-based disinfectants from salt water through electrochemical principles should be applied. Objectives: This study surveys the possibility of optimally producing active chlorine from synthetic NaCl solutions using an electro-chlorination system through RSM. Methods: Response surface methodology (RSM) has been used for modeling and optimizing a variety of water and wastewater treatment processes. This study surveys the possibility of optimally producing active chlorine from synthetic saline solutions using electrolysis through RSM. Various operating parameters, such as distance of electrodes, sodium chloride concentration, electrical potential, and electrolysis time were evaluated. Results: Various operating parameters, such as distance of electrodes, sodium chloride concentration, electrical potential, and electrolysis time were evaluated. A central composite design (CCD) was applied to determine the optimal experimental factors for chlorine production. Conclusions: The concentration of the synthetic NaCl solution and the distance between electrodes had the greatest influence on the generation of hypochlorite disinfectant. The closer the distance between the electrodes and the higher the concentration of the synthetic NaCl solution, the more hypochlorous acid disinfectant was produced.

Han River Pollution Studies (한강의 오염도)

  • Choe, Sang
    • 한국해양학회지
    • /
    • v.7 no.1
    • /
    • pp.24-45
    • /
    • 1972
  • The Han River is an important water source in Seoul and neighbouring districts, for public and industrial supply, and for agriculture and fishery. Nowadays, more than six million inhabitants are supplied withe water from this river. The total length of the river is 470km, and has 17 10$\^$9/㎥ an average annual flow. The hydrographic characteristics at Seoul are 653㎥/sec in an average flow, 4,608㎥/sec in the maximum average flow, and 201㎥/sec in the minimum average flow. These are influenced in some degree by snowmelt in early spring, and greatly by the flood during summer. For the pollution problems, the periods of low flow are critical ones. As a rule they occur around the months November through June. Nowadays, most of the sewage from towns and industries is discharged untreated. Apart from domestic and industrial sewages, there are some discharges of mineral matter by mines in the upriver region. In general, water quality of the Han River is kept very clean and healthy until Kwangnaru of the upper region of Seoul. A large pollution, however, is received in the downstream by the domestic and industrial sewages of Seoul. It can be seen that dissolved oxygen, COD and BOD$\sub$5/ diminish markedly, and the intensity of almost every water parameter of the river continues to increase. Comparison of the figures for 1971 derived from a sampling point 40km downstream of Kwangnaru leads to the conclusion that hardness, Ca and Mg were no changed; alkalinity, Si and soluble- Fe were slightly increased; CO$\sub$2/, acidity, Cl, NO$\sub$2/-N, Cu, Zn and Al were increased in 2 and 3 times; total residue, total ignitious residue, COD, BOD$\sub$5/, NH$\sub$4/-N, PO$\sub$4/-P, Mn, Pb and total-Fe were increased in 4 to 7 times; and SO$\sub$4/, particulate-Fe and Cd were increased in 10 to 11 times. On the other hand, coliforms were increased in 650 times; fecal coliforms in 365 times; enterococci and total plate counts in 30 times, respectively. In view points of water quality standards, the down Han River water is now leveling out in Cd, coliforms and fecal coliforms for the agricultural use; in dissolved oxygen and some trace elements (Cu, Zn, Pb and Cd) for the fishery use; in ammonia, COD, BOD$\sub$5/, and Cd for the drinking use.

  • PDF