• Title/Summary/Keyword: Drinking water temperature

Search Result 201, Processing Time 0.028 seconds

Impact of urbanization on Nwaorie and Otamiri Rivers in Owerri, Imo State, Nigeria

  • Ogbomida, Emmanuel T.;Emeribe, Chukwudi N.
    • Advances in environmental research
    • /
    • v.2 no.2
    • /
    • pp.119-129
    • /
    • 2013
  • The study examined the effect of urbanization on the water quality of Nwaorie and Otamiri Rivers in Owerri metropolis, Imo State, South-East Nigeria. Water samples were collected from Nwaorie and Otamiri Rivers from four sampling stations up and down stream. Water parameters analyzed using standard procedures were: color, turbidity, temperature, pH, total hardness, total solids, metals (Iron and magnesium), anions (nitrate and ammonia) and Fecal coliform. Results showed increased levels of coloration, iron, ammonia, turbidity and fecal coliform which exceeded the World Health Organization (WHO) permissible limits for drinking water. Increase in these parameters indicated influx of industrial effluent from the nearby industries and indiscriminate disposal of wastes at the bank of the rivers. Application of ANOVA showed various degree of variation in pollutants levels between the two rivers and at different sampling points. River Nwaorie was observed to be more impacted than River Otamiri. High values of iron observed from the study could be deleterious to human health if the river water is consumed without treatment. The study, therefore, recommended proper waste management and disposal as well as effluent treatments in Owerri municipal against pollution of surface water.

Effect of Untreated Water Flow Rate at Certain Temperature on the Discharge of Treated Water

  • Ullah, Muhammad Arshad;Aslam, Muhammad;Babar, Raheel
    • The Korean Journal of Food & Health Convergence
    • /
    • v.5 no.6
    • /
    • pp.5-9
    • /
    • 2019
  • Desalination requires large energy. This experiment deals to desalinate brackish water through solar panels. The discharge from desalination plants is almost entirely water, and .01 percent is salt. Desalination is a process that extracts minerals from saline water. Solar-powered desalination technologies can be used to treat non-traditional water sources to increase water supplies in rural, arid areas. Water scarceness is a rising dilemma for large regions of the world. Access to safe, fresh and pure clean drinking water is one of the most important and prime troubles in different parts of the world. Among many of water cleansing technologies solar desalination/distillation/purification is one of the most sustainable and striking method engaged to congregate the supply of clean and pure drinkable water in remote areas at a very sound cost. Six types of dripper having discharge 3 - 8 lh-1 were installed one by one and measured discharge and volume of clean water indicated that at 6 lh-1 untreated water discharge have maximum evaporation and volume of clean water was 19.2 lh-1 at same temperature and radiations. Now strategy was developed that when increased the temperature the intake discharge of untreated water must be increased and salt drained water two times more than treated water.

Preparations and characteristics of the ceramic balls for heavy metals absorption and antibacterial activities in the drinking water (음용수중의 중금속흡착과 항균성용 세라믹 볼의 제조 및 특성평가)

  • Park, Chun-Won;Park, Ra-Young;Park, Sun-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.263-268
    • /
    • 2005
  • The ceramic balls impregnated with $20{\sim}40nm$ sized Ag colloid were examined for heavy metals absorption and antibacterial activities in the drinking water. The preparation conditions of ceramic ball that the porosity was excellent were as follows: starting material: 85 wt% $Ca_{10}(PO_4)_6(OH)_2$, binder: 5 wt% PVA and 15 wt% ${\alpha}-Ca_3(PO_4)_2$, heating temperature: $1000^{\circ}C$, duration: 3 hrs. The ceramic balls obtained under these conditions showed specific surface area of $110m^2/g$, pore size of $120{\mu}m$ and porosity of 80%. Also, as the results of a performance test on a rate of adsorbing and removing heavy metals in the drinking water by using the.AAS, heavy metals such as Zn, Mn, Fe and Cu were removed to the extent that their content became 0.03mg/l or lower after 1 day and they showed an excellent bactericidal activity that all coliforms were killed after 3 hrs.

Factors Affecting Chemical Disinfection of Drinking Water

  • Lee, Yoon-jin;Nam, Sang-ho;Jun, Byong-ho;Oh, Kyoung-doo;Kim, Suk-bong;Ryu, Jae-keun;Dionysiou, Dionysios D.;Itoh, Sadahiko
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.126-131
    • /
    • 2004
  • This research sought to compare chlorine, chlorine dioxide and ozone as chemical disinfectants of drinking water, with inactivation of total coliform as the indicator. The inactivation of total coliform was tested against several variables, including the dose of disinfectant, contact time, pH, temperature and DOC. A series of batch processes were performed on water samples taken from the outlet of a settling basin in a conventional surface water treatment system that is provided with the raw water drawn from the mid-stream of the Han River. Injection of 1 mg/L of chlorine, chlorine dioxide and ozone resulted in nearly 2.4, 3.0 and 3.9 log inactivation, respectively, of total coliform at 5 min. To achieve 99.9 % the inactivation, the disinfectants were required in concentrations of 1.70, 1.00 and 0.60 mg/L for chlorine, chlorine dioxide and ozone, respectively. Bactericidal effects generally decreased as pH increased in the range of pH 6 to 9. The influence of pH change on the killing effect of chlorine dioxide was not strong, but that on ozone and free chlorine was sensitive. The activation energies of chlorine, chlorine dioxide and ozone were 36,053, 29,822 and 24,906 J/mol for coliforms with inactivation effects being shown in the lowest orders of these.

Operating Conditions for Minimization of DBPs (Disinfection by-Products) in Drinking Water Supply System (소독부산물 최소화를 위한 운영조건 연구)

  • Shin, Hyung-Soon;Choi, Phil-Kweon;Kim, Jong-Su;Choi, Ill-Woo;Kim, Sang-Hoon;Kim, Tae-Hyun;Lee, Kyung-Hee;Lee, Soo-Moon;Jang, Eun-Ah;Jung, Yeon-Hoon;Kim, Jung-Yeol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.330-337
    • /
    • 2005
  • This study was carried out to propose the managemental improvement of the purification plants and the distribution facilities which can minimize the formation of disinfection by-products in drinking water distribution system. The disinfection by-products were highly created in the water treatment plant that the organic matters were high and the chlorine dosage was excessive. The concentration of DSPs was shown the highest value in August and the lowest value in December, because of temperature and pre-chlorine dosage effect. From the result of tracer test, the travel time from the treatment plant to the end of pipeline was around 3-4 days in summer, 5-6 days in winter, respectively, and the DSPs concentration of the reservoir(end of pipe) was 2-3 times higher than that of the beginning point. The improvement of the chlorination process and structural reformation of distribution facility was demanded to minimize the DSPs increase from purification plant to the end of pipe.

Control of the CaCO3 Saturation Index Parameters for Protecting the Corrosion of Waterworks Pipe (상수도관 부식방지를 위한 탄산칼슘 포화지수(LI) 인자 제어에 관한 연구)

  • Park, Young-Bok;Kong, Sung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.372-378
    • /
    • 2005
  • Calcium Carbonate Saturation Index (LI: Langelier Index), an indicator of $CaCO_3(s)$ saturation, indicates corrosiveness of drinking water and it has been used to monitor drinking water conditions in USA, E.U, and Japan. The objective of this research was to measure LI parameters including water temperature, pH, total alkalinity, calcium ion concentration, and electric conductivity, and to evaluate possibility of using LI in domestic system. Results showed that water temperature varied from 2.0 to $26^{\circ}C$ during 15 months, indicating an average annual temperature of $23.9^{\circ}C$. Total alkalinity was from 20 to 45 mg/L. The concentration difference between total alkalinity and $HCO_3{^-}$ value was hardly observed; the concentration of total alkalinity can be replaced by that of $HCO_3{^-}$. Tap water had a medium corrosiveness since LI values were from 2.0 to 0.5. To reduce the corrosiveness and to increase LI values of drinking water, the results of this study showed that chemicals such as $Ca(OH)_2$, $CaCO_3$, NaOH, or $NaHCO_3$ should be added to water treatment plants.

Effects of Formulation Variables and Drinking Temperature on Acceptability of Jujube Tea Products (배합비와 음용 온도가 대추차의 기호도에 미치는 영향)

  • 최광수;임무혁;최종동
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.5
    • /
    • pp.827-830
    • /
    • 1997
  • Sensory evaluation method was used to develop a type jujube tea the organoleptic properties were evaluated with regard to the optimum sugar content, clarity, drinking temperature and fruit pulp content of the jujube tea. Clarified jujube tea extracted from 25% by weight of dry jujube fruits and 75% water was preferred to those from 15%, 20% and 30% jujube fruites although those from 20% and 30% were not significantly different at 5%level. In spite of the average acceptability score of cloudy jujube tea with 5% of added fruit pulp was not significantly different from that of clarified one, the more fruit pulp in the tea products the worse its acceptability. Cold jujube tea was preferred to warm and hot ones, but these were not significantly different.

  • PDF

Effects of rehydration fluid temperature and composition on body weight retention upon voluntary drinking following exercise-induced dehydration

  • Park, Sung-Geon;Bae, Yoon-Jung;Lee, Yong-Soo;Kim, Byeong-Jo
    • Nutrition Research and Practice
    • /
    • v.6 no.2
    • /
    • pp.126-131
    • /
    • 2012
  • The purpose of this study was to determine the effects of beverage temperature and composition on weight retention and fluid balance upon voluntary drinking following exercise induced-dehydration. Eight men who were not acclimated to heat participated in four randomly ordered testing sessions. In each session, the subjects ran on a treadmill in a chamber maintained at $37^{\circ}C$ without being supplied fluids until 2% body weight reduction was reached. After termination of exercise, they recovered for 90 min under ambient air conditions and received one of the following four test beverages: $10^{\circ}C$ water (10W), $10^{\circ}C$ sports drink (10S), $26^{\circ}C$ water (26W), and $26^{\circ}C$ sports drink (26S). They consumed the beverages ad libitum. The volume of beverage consumed and body weight were measured at 30, 60, and 90 min post-recovery. Blood samples were taken before and immediately after exercise as well as at the end of recovery in order to measure plasma parameters and electrolyte concentrations. We found that mean body weight decreased by 1.8-2.0% following exercise. No differences in mean arterial pressure, plasma volume, plasma osmolality, and blood electrolytes were observed among the conditions. Total beverage volumes consumed were $1,164{\pm}388$, $1,505{\pm}614$, $948{\pm}297$, and $1,239{\pm}401$ ml for 10W, 10S, 26W, and 26S respectively ($P$ > 0.05). Weight retention at the end of recovery from dehydration was highest in 10S ($1.3{\pm}0.7kg$) compared to 10W ($0.4{\pm}0.5kg$), 26W ($0.4{\pm}0.4kg$), and ($0.6{\pm}0.4kg$) ($P$ < 0.005). Based on these results, carbohydrate/electrolyte-containing beverages at cool temperature were the most favorable for consumption and weight retention compared to plain water and moderate temperature beverages.

Experimental Study on Temperature Dependence of Nitrate Sensing using an ISE-based On-site Water Monitoring System

  • Jung, Dae-Hyun;Kim, Dong-Wook;Cho, Woo Jae;Kim, Hak-Jin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.122-122
    • /
    • 2017
  • Recently, environmental problems have become an area of growing interests. In-situ monitoring of water quality is fundamental to most environmental applications. The accurate measurement of nitrate concentrations is fundamental to understanding biogeochemistry in aquatic ecosystems. Several studies have reported that one of the most feasible methods to measure nitrate concentration is the use of Ion Selective-electrodes (ISEs). The ISE application to water monitoring has several advantages, such as direct measurement methodology, high sensitivity, wide measurement range, low cost, and portability. However, the ISE methods may yield inconsistent results where there was a difference in temperature between the calibration and measurement solutions, which is associated with the temperature dependence of ionic activity coefficients in solution. In this study, to investigate the potential of using the combination of a temperature sensor and nitrate ISEs for minimizing the effect of temperature on real-time nitrate sensing in natural water, a prototype of on-site water monitoring system was built, mainly consisting of a sensor chamber, an array of 3 ISEs, an waterproof temperature sensor, an automatic sampling system, and an arduino MCU board. The analog signals of ISEs were obtained using the second-order Sallen-key filter for performing voltage following, differential amplification, and low pass filtering. The performance test of the developed water nitrate sensing system was conducted in a monitoring station of drinking water located in Jeongseon, Kangwon. A temperature compensation method based on two-point normalization was proposed, which incorporated the determination of temperature coefficient values using regression equations relating solution temperature and electrode signal determined in our previous studies.

  • PDF

LNG-Vessels Hybrid Engine Seawater Desalination Complex System (LNG 선박 하이브리드 엔진 및 해수 담수화 복합 시스템)

  • Lim, Jae Jun;Lee, Dong-Heon;Byun, Gi-Sik;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.663-664
    • /
    • 2016
  • Temperature difference power generation using sea water is a method repeatedly closed liquefaction and gasification by using the ammonia (refrigerant) of the deep sea water and surface water with a temperature difference between turning the turbine. The larger the temperature difference between the nature of the temperature characteristic energy generation development, the better. This is the story that the surface waters of the deep-water temperature difference is large. But the winter is not large temperature difference between surface water and deep water has lowered energy efficiency. And desalination technologies accounted for 97% of the earth, but we can not eat the technology to convert sea water into fresh water, fresh water produced by the desalination technology that is available for various industries such as irrigation, drinking water in the vessel.In this paper, LNG transport vessels, based on the LNG transport ship to the temperature difference power generation using cold energy of thermal energy and LNG marine diesel engines, which use the existing order to improve the temperature of the surface waters of the season that is the current problem we propose that a complex development of desalination and desalination of seawater freezing research into hybrid research and utilizing the cold energy of the engine.

  • PDF