• 제목/요약/키워드: Drinking water distribution system

검색결과 84건 처리시간 0.032초

Manganese treatment to reduce black water occurrence in the water supply

  • Kim, Jinkeun
    • Environmental Engineering Research
    • /
    • 제20권3호
    • /
    • pp.230-236
    • /
    • 2015
  • 26 multi-regional water treatment plants (WTPs) were investigated, to determine the characteristics of manganese (Mn) concentration and removal in Korea. Mn concentrations of raw water in most WTPs were higher than the drinking water standard (i.e., 0.05 mg/L); thus, proper removal of Mn at the WTPs is needed. Mn concentration was generally higher in lakes than rivers due to seasonal lake turnovers. The Mn concentrations of treated water at 26 WTPs in 2012 were less than 0.05 mg/L, due to strict law enforcement and water treatment processes optimization. However, before 2010, those concentrations were more than 0.05 mg/L, which could have led to an accumulation of Mn oxides in the distribution system. This could be one of the main reasons for black water occurrence. Therefore, regular monitoring of Mn concentration in the distribution system, flushing, and proper Mn removal at WTPs are needed, to supply clean and palatable tap water.

수도관 재질에 따른 생물막 형성 미생물의 Community-Level Physiological Profile(CLPP) 특성 (Characteristics of Community-Level Physiological Profile (CLPP) of Biofilm Microorganisms Formed on Different Drinking Water Distribution Pipe Materials)

  • 박세근;이현동;김영관
    • 상하수도학회지
    • /
    • 제20권3호
    • /
    • pp.431-441
    • /
    • 2006
  • This study investigated the physiological characteristics of biofilm microorganisms formed onto the different drinking water distribution pipe surfaces. The simulated drinking water distribution pipe system which had several PVC, STS 304, and GS coupons was operated at flow velocity of 0.08 m/sec (Re 1,950) and 0.28 m/sec (Re 7,300), respectively. At velocity of 0.08 m/sec, the number of viable heterotrophic bacteria in the biofilm over the 3 months of operation averaged $3.3{\times}10^4$, $8.7{\times}10^4$, and $7.2{\times}10^3CFU/cm^2$ for PVC, STS, and GS surfaces, respectively. The number of attached heterotrophic bacteria averaged $1.4{\times}10^3$, $5.6{\times}10^2$, and $6.5{\times}10^2CFU/cm^2$ on PVC, STS, and GS surfaces at the system with relatively high flow velocity of 0.28m/sec. The changes of physiological profile of biofilm-forming microorganisms were characterized by community-level assay that utilized the Biolog GN microplates. Biofilms that formed on different pipe surfaces displayed distinctive patterns of community-level physiological profile (CLPP), which reflected the metabolic preference for different carbon sources and/or the utilization of these carbon sources to varying degrees. The CLPP patterns have shown that the metabolic potential of a biofilm community was different depending on the pipe material. The effect of the pipe material was also characterized differently by operation condition such as flow rate. At flow velocity of 0.08 m/sec, the metabolic potential of biofilm microorganisms on GS surface showed lower levels than PVC and STS biofilms. For biofilms on pipe material surfaces exposed to water flowing at 0.28 m/sec, the metabolic potential was in order of PVC>GS>STS. Generally, the levels of the bacterial biofilm's metabolic potentials were shown to be notably higher on pipe surfaces exposed to water at 0.08 m/sec when compared to those on pipe surfaces exposed to water at 0.28 m/sec.

Design of Micro Water Supply System Using Solar Energy

  • Sharma, Ekisha;Khatiwada, Nawa Raj;Ghimire, Anish
    • 적정기술학회지
    • /
    • 제5권1호
    • /
    • pp.8-17
    • /
    • 2019
  • Solar pumps, for water lift systems, is becoming popular in rural areas for supplying drinking water in dry seasons when its need is elevated. The development in technology has also made solar pumps readily available and cheap which has increased its demands. So, for scattered settlements having a limited budget for operation and maintenance costs, solar pump is preferred over grid connected electrical pumping systems. This primary objective of the study was to design a solar photovoltaic pumping drinking water supply system for a small health post which is about 45 km east from Kathmandu, the capital city of Nepal. The study also compared and verified the final design with the system's existing design prepared by a development agency. The water source for this study was a confined aquifer 115m below the surface. The water demand was calculated to be 11m3 per day. A 1500 kPa submersible pump attached to a motor was selected and installed. Along with that twelve solar panels, reservoir, transmission main and distribution main was designed. The outcomes conclude solar photovoltaic pumping water supply systems to be cost-effective with an estimated cost of only USD 0.84 million per MLD. Solar pumps require low maintenance and operation costs and its repairs can quickly be done by the local people. The study also shows that solar technology produces no sound, needs no fuel making it environmentally friendly.

상수관망에서 Chlorite-Monochloramine 소독제를 이용한 질산화 세균 및 종속영양세균의 제어 (Combined Chlorite-Monochloramine Application for Controlling Nitrifying and Heterotrophic Bacteria in Drinking Water Distribution System)

  • 박세근;김영관;최성찬
    • 미생물학회지
    • /
    • 제49권4호
    • /
    • pp.321-327
    • /
    • 2013
  • 본 연구에서는 암모니아 산화세균과 종속영양세균을 포함한 세균 생물막에 대한 chlorite ($0.66{\pm}0.01mg/L$)의 영향을 monochloramine ($1.77{\pm}0.03mg/L$)의 존재 유무에 따른 조건에서 알아보았다. Chlorite 단독 또는 monochloramine과 함께 적용한 경우에서 공히 생물막과 물 시료에 존재하는 암모니아 산화세균은 검출한계($0.6MPN/cm^2$ and 0.2 MPN/ml)에 근접한 수준으로 감소되는 것으로 나타났지만, chlorite/monochloramine으로 함께 첨가했을 때의 저해효과가 더욱 크게 나타났다. 종속영양세균의 경우 암모니아 산화세균과 달리 chlorite에 의한 저해가 거의 나타나지 않았다. 하지만 chlorite/monochloramine으로 적용한 경우 생물막과 물 시료에서 종속영양세균의 개체 수는 대조군 대비 각각 3.1 log와 3.0 log 감소하는 상당한 저해 효과를 보여주었다. 이러한 결과는 상수관망에 형성된 생물막에 존재하는 질산화 세균과 종속영양세균에 대한 효과적 제어방법중의 하나로 chlorite와 monochloramine 혼합사용의 성공적 가능성을 제시해 준다.

경기북부지역 먹는 물 중 브롬이온 및 브롬산염의 분포특성에 관한 연구 (A Study on the Distribution Characteristics of Bromide and Bromate in Drinking Water in Northern Gyeonggi Area)

  • 정종필;최시림;류형렬;박경수;송희일;이현진;조미현;오조교;윤미혜
    • 한국환경보건학회지
    • /
    • 제44권3호
    • /
    • pp.244-249
    • /
    • 2018
  • Objectives: The purpose of this study was the investigation of bromide and bromate in drinking water of water supply plants, mineral springs and small water supply system located in northern area of Gyeonggi province. Methods: Analytical method was based on EPA 326.0 to use Postcolumn reaction (PCR). The instrument was 887 professional UV/VIS detector IC manufactured in Metrohm. Results: Bromate was detected at $0.5{\sim}2.4{\mu}g/L$ in tap water from 5 water supply plants. These plants were used as disinfection method for sodium hypochlorite and on-site chlorine that causes generate bromate as a by products even if not used ozone. Conclusions: The bromate was detected up to $2.5{\mu}g/Lin$ drinking water in northern Gyeonggi area that showed within $10{\mu}g/L$ for standard of tap water. However, the continuous monitoring of bromate is necessary in drinking water.

가상의 물 수요곡선에 따른 수충격에 의한 염소농도변동 모의연구 (Simulation of chlorine decay by waterhammer in water distribution system based on hypothetical water demand curve)

  • 백다원;김현준;김상현
    • 상하수도학회지
    • /
    • 제32권2호
    • /
    • pp.107-113
    • /
    • 2018
  • Maintaining adequate residual chlorine concentration is an important criteria to provide secure drinking water. The chlorine decay can be influenced by unstable flow due to the transient event caused by operation of hydraulic devices in the pipeline system. In order to understand the relationship between the transient event and the chlorine decay, the probability density function based on the water demand curve of a hypothetical water distribution system was used. The irregular transient events and the same number of events with regular interval were assumed and the fate of chlorine decay was compared. The chlorine decay was modeled using a generic chlorine decay model with optimized parameters to minimize the root mean square error between the experimental chlorine concentration and the simulated chlorine concentration using genetic algorithm. As a result, the chlorine decay can be determined through the number of transients regardless of the occurrence intervals.

해안지역 지하수댐 염수침입 방지기술 개선 방안 (Countermeasure to Prevent Seawater Intrusion on Coastal Area)

  • 부성안;이기철;김진성;정교철;고양수
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 총회 및 춘계학술발표회
    • /
    • pp.148-154
    • /
    • 2002
  • Groundwater Dam is one of the reliable techniques to get huge amount of groundwater abstraction for municipal, agricultural, drinking, industrial water supply system. It can be a major technique to solve water shortage problems when it based on the sufficient watershed, proper topology, and adequate aquifer distribution and pollution control. It is suggested that the two consecutive underground wall in the coastal area to prevent seawater intrusion beneath a single wall.

  • PDF

급배수시스템에서 잔류염소 농도 균등화를 위한 재염소 처리 (Rechlorination for residual chlorine concentration equalization in distribution system)

  • 김진근;한지안
    • 상하수도학회지
    • /
    • 제28권1호
    • /
    • pp.91-101
    • /
    • 2014
  • Three water treatment plants(WTPs) in Jeju island whose source water have different characteristics from those of the mainland of Korea were investigated. Coefficients of bulk water decay($k_b$) of free chlorine at $5^{\circ}C$ for ES, GJ, NW WTPs were $-0.003hr^{-1}$, $-0.002hr^{-1}$ and $-0.001hr^{-1}$ respectively based on bottle tests. To simulate the free chlorine variations in the distribution system using EPANET, ES WTP was chosen. Free chlorine concentrations of several sites were less than the drinking water quality standards(i.e., 0.1 mg/L); E5(0.03 mg/L), E6(0.02 mg/L), W21(0.02 mg/L) and W25(0.03 mg/L). To maintain more than 0.1 mg/L of free chlorine in the distribution system, at least 1.9 mg/L of chlorine was needed at the WTP, which suggested rechlorination was needed to supply palatable tap water to customers. Two sites, one that diverged into E5 and E6 in the east-line and another located before E21 in the west-line were selected for the appropriate rechlorination locations. The recommended rechlorination dosages were 0.42 mg/L for the east and 0.27 mg/L for the west. The simulated results indicated that the free chlorine could be reduced to 0.4 mg/L at the WTP with rechlorination, and taps with excessive free chlorine could be more stabilized(i.e., 0.1~0.4 mg/L).

서울시 수돗물 배급수 계통에서 소독부산물 분포특성 (Characteristics of Disinfection Byproducts in Tap Water of Seoul)

  • 장현성;이도원;김창모;이인숙;이수원;박 현
    • Korean Chemical Engineering Research
    • /
    • 제44권2호
    • /
    • pp.216-226
    • /
    • 2006
  • 클로로포름(chloroform), 디클로로아세틱에시드(dichloroacetic acid; DCAA), 트리클로로아세틱에시드(trichloroacetic acid; TCAA) 등은 먹는 물의 염소소독 시 발생되는 주요한 소독부산물이다. 이 중 클로로포름과 DCAA는 발암물질로 분류되어 있어 이에 대한 분포특성연구는 서울시의 먹는 물의 안전성을 판단하기 위해 중요하다. 2002~2004년의 3년 동안 배급 수 계통별로 소독부산물을 분석하였다. 이 중 총트리할로메탄(total trihalomethanes; THMs)의 평균 농도가 정수장에서 생산된 물에서는 0.015 mg/L, 직접 각 가정으로 공급되는 직수에서는 0.019 mg/L, 물탱크를 경유해 각 가정으로 공급되는 물탱크 수에서는 0.023 mg/L로 체류시간이 증가함에 따라 그의 농도는 증가하는 것으로 나타났다. 또한, 수온의 영향으로 인해 여름철에 비교적 높은 농도로 검출되었다. THMs 이외의 다른 소독부산물들도 역시 유사한 경향을 나타내었다. 검출된 소독부산물의 양은 환경부 먹는물 수질기준의 1/4~1/6 정도의 낮은 수준이기 때문에 서울시 수돗물은 소독부산물에 있어 항상 안전한 것으로 나타났다.

배급수계통에서 잔류염소 감소 특성 및 적용연구 (Modeling and Application of Chlorine Bulk Decay in Drinking Water Distribution System)

  • 안재찬;박창민;구자용
    • 상하수도학회지
    • /
    • 제19권4호
    • /
    • pp.487-496
    • /
    • 2005
  • Chlorine bulk decay tests were carried out by bottle test under controlled conditions in a laboratory. Experiments were performed at different temperatures: $5^{\circ}C$, $15^{\circ}C$, $25^{\circ}C$, and the water temperatures when samples were taken from the effluent just before entering to its distribution system. 38 bulk tests were performed for water of Al (water treatment plant), 4 bulk tests for A2 (large service reservoir), and A3(pumping station). Residual chlorine concentrations in the amber bottles were measured over time till about 100 hours and bulk decay coefficients were evaluated by assuming first-order, parallel first-order, second-order. and $n^{th}-order$ reaction. The $n^{th}-order$ coefficients were obtained using Fourth-order Runge-Kutta Method. A good-fit by the average coefficient of determination ($R^2$) was first-order ($R^2=0.90$) < parallel first-order ($R^2{_{fast}}=0.92$, $R^2{_{slow}}=0.95$) < second-order ($R^2=0.95$) < $n^{th}-order$ ($R^2=0.99$). But if fast reaction of parallel first-order bulk decay were applied to the effluent of large service reservoir with ca. 20 hours of travel time and slow reaction in the water distribution system following the first 20 hours, parallel first-order bulk decay would be best and easy for application of water quality modeling technique.