• Title/Summary/Keyword: Drinking Volume

Search Result 140, Processing Time 0.033 seconds

Pathophysiology and management of disorders in water metabolism (수분 대사 장애 질환의 병태 생리와 치료)

  • Kim, Dong Un
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.5
    • /
    • pp.430-435
    • /
    • 2007
  • Even though we drink and excrete water without recognition, the amount and the composition of body fluid remain constant everyday. Maintenance of a normal osmolality is under the control of water balance which is regulated by vasopressin despite sodium concentration is the dominant determinant of plasma osmolality. The increased plasma osmolality (hypernatremia) can be normalized by the concentration of urine, which is the other way of gaining free water than drinking water, while the low plasma osmolality (hyponatremia) can be normalized by the dilution of urine which is the only regulated way of free water excretion. On the other hand, volume status depends on the control of sodium balance which is regulated mainly by renin-angiotensin-aldosterone system, through which volume depletion can be restored by enhancing sodium retention and concomitant water reabsorption. This review focuses on the urine concentration and dilution mechanism mediated by vasopressin and the associated disorders; diabetes insipidus and syndrome of inappropriate antidiuretic hormone secretion.

Design and Evaluation of Portable Forward Osmosis Desalination Device (휴대용 정삼투 담수화 장치의 설계 및 평가에 관한 연구)

  • Park, Chul-Woo;Kang, Ho;Jung, Dongho;Cha, Jaechul;Kim, Daejoong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.301-305
    • /
    • 2013
  • This study aims to design a portable desalination device and discusses the feasibility of the device for overcoming a shortage of safe drinking water. A low-energy, self-supporting, and portable desalination device is designed based on forward osmosis (FO) using an ammonium bicarbonate solution. Experiments with various concentrations of ammonium bicarbonate solution and sodium chloride solution showed that the portable desalination device's performance such as volume and flow rate of desalting water and time required satisfied drinking water standards. The device performance is controlled by varying the concentration and temperature of the solution.

Ingestion Exposure to Nitrosamines in Chlorinated Drinking Water

  • Kim, He-Kap;Han, Ki-Chan
    • Environmental Analysis Health and Toxicology
    • /
    • v.26
    • /
    • pp.2.1-2.7
    • /
    • 2011
  • Objectives: N-Nitrosodimethylamine (NDMA) is classified as a probable human carcinogen by the United States Environmental Protection Agency (US EPA) and is formed during the chlorination of municipal drinking water. In this study, selected nitrosamines were measured in chlorinated drinking water collected from Chuncheon, Kangwon-do, Republic of Korea, and a risk assessment for NDMA was conducted. Methods: Twelve water samples were collected from 2 treatment plants and 10 household taps. Samples were analyzed for 6 nitrosamines via solid-phase extraction cleanup followed by conversion to dansyl derivatives and high-performance liquid chromatography-fluorescence detection (HPLC-FLD). Considering the dietary patterns of Korean people and the concentration change of NDMA by boiling, a carcinogenic risk assessment from ingestion exposure was conducted following the US EPA guidelines. Results: NDMA concentrations ranged between 26.1 and 112.0 ng/L. NDMA in water was found to be thermally stable, and thus its concentration at the end of boiling was greater than before thermal treatment owing to the decrease in water volume. The estimated excess lifetime carcinogenic risk exceeded the regulatory baseline risk of $10^{-5}$. Conclusions: This result suggests that more extensive studies need to be conducted on nitrosamine concentration distributions over the country and the source of relatively high nitrosamine concentrations.

Effects of rehydration fluid temperature and composition on body weight retention upon voluntary drinking following exercise-induced dehydration

  • Park, Sung-Geon;Bae, Yoon-Jung;Lee, Yong-Soo;Kim, Byeong-Jo
    • Nutrition Research and Practice
    • /
    • v.6 no.2
    • /
    • pp.126-131
    • /
    • 2012
  • The purpose of this study was to determine the effects of beverage temperature and composition on weight retention and fluid balance upon voluntary drinking following exercise induced-dehydration. Eight men who were not acclimated to heat participated in four randomly ordered testing sessions. In each session, the subjects ran on a treadmill in a chamber maintained at $37^{\circ}C$ without being supplied fluids until 2% body weight reduction was reached. After termination of exercise, they recovered for 90 min under ambient air conditions and received one of the following four test beverages: $10^{\circ}C$ water (10W), $10^{\circ}C$ sports drink (10S), $26^{\circ}C$ water (26W), and $26^{\circ}C$ sports drink (26S). They consumed the beverages ad libitum. The volume of beverage consumed and body weight were measured at 30, 60, and 90 min post-recovery. Blood samples were taken before and immediately after exercise as well as at the end of recovery in order to measure plasma parameters and electrolyte concentrations. We found that mean body weight decreased by 1.8-2.0% following exercise. No differences in mean arterial pressure, plasma volume, plasma osmolality, and blood electrolytes were observed among the conditions. Total beverage volumes consumed were $1,164{\pm}388$, $1,505{\pm}614$, $948{\pm}297$, and $1,239{\pm}401$ ml for 10W, 10S, 26W, and 26S respectively ($P$ > 0.05). Weight retention at the end of recovery from dehydration was highest in 10S ($1.3{\pm}0.7kg$) compared to 10W ($0.4{\pm}0.5kg$), 26W ($0.4{\pm}0.4kg$), and ($0.6{\pm}0.4kg$) ($P$ < 0.005). Based on these results, carbohydrate/electrolyte-containing beverages at cool temperature were the most favorable for consumption and weight retention compared to plain water and moderate temperature beverages.

Effects of Repeated Exposure to Pb Acetate on Hematopoietic Function, Testis and Kidney in Male Rats (Pb acetate의 13주 반복투여가 랫드의 조혈기능, 정소 및 신장에 미치는 영향)

  • 홍충만
    • Toxicological Research
    • /
    • v.17 no.4
    • /
    • pp.309-316
    • /
    • 2001
  • Male Sprague Dawley rats were exposed to 0, 0.04, 0.2, and 0.8% Pb acetate in drinking water for 13 weeks and fed a commercial diet. Dose-related adverse effects observed at the end of the Pb acetate exposure in the drinking water were as follows: decrease in body weight gain, decrease in hemoglobin, hematocrit(HCT), mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH), increase in serum glucose, decrease in serum testosterone, increase in lead accumulation and $\delta$-ALA release in urine, and decrease in $\delta$-ALAD activities DNA content and histopathlogy (intranuclear inclusion body in kidney proximal tubule cell). Taken together, repeated exposure of lead acetate induced toxicities in hematopoietic system, especially testis and kidney.

  • PDF

Analysis of Haloacetic Acids in Drinking Water by Direct Derivatization and Headspace-SPME Technique with GC-MS (Handspace Solid Phase Microextraction 방법에 의한 HAAs 분석에 관한 연구)

  • Cho, Deok-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.638-648
    • /
    • 2004
  • In many drinking water treatment plants, chlorination process is one of the main techniques used for the disinfection of water. This disinfecting treatment leads to the formation of haloacetic acid (HAAs). In this study, headspace solid-phase microextraction (HS-SPME) was studied as a possible alternative to liquid-liquid extraction for the analysis of HAAs in drinking water. The method involves direct derivatization of the acids to their methyl esters without methyl tert-butyl ether (MTBE) extraction, followed by HS-SPME with a $2cm-50/30{\mu}m$ divinylbenzene/carboxen/polydimethylsiloxane fiber. The effects of experimental parameters such as selection of SPME fiber, the volume of sulphuric acid and methanol, derivatization temperature and time, the addition of salts, extraction temperature and time, and desorption time on the analysis were investigated. Analytical parameters such as linearity, repeatability and limit of detection were also evaluated. The $2cm-50/30{\mu}m$-divinylbenzene/carboxen/polydimethylsiloxane fiber, sulphuric acid of 1ml, methanol of 3ml, derivatization temperature of $50^{\circ}C$ derivatization time of 2hrs, sodium chloride salt of 10g, extraction time of 30 minutes, extraction temperature of $20^{\circ}C$ and desorption time of 1 minute at $260^{\circ}C$ were selected as the optimal experimental conditions for the analysis of HAAs. The linearities ($r^2$), relative standard deviations (%RSD) and limits of detection (LOD) for HAAs were 0.9978~0.9991, 1.1~9.8% and $0.05{\sim}0.2{\mu}g/l$, respectively.

A Study on Dissolve and Remove Analysis of Pollutants in Drinking Water by Suspected Cancer Causing Organic Chemicals using AOPs (Advanced Oxidation Processes) & M/F Hybird Process (고도산화와 정밀여과막 혼성공정을 이용한 먹는 물에 존재하는 발암원인으로 의심되는 유기화학성분의 분해 및 제거분석에 관한 연구)

  • An, Tai-Young;Park, Mi-young;Hur, Jang-hyun;Jun, Sang-ho;Han, Mi-Ae;An, Yoon-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.193-200
    • /
    • 2007
  • The AOPs research defined by creating a sufficient amount of OH radicals from the dissolution of organic materials through photoxidation and research for a complete elimination of residual organic materials by membrane are actively ongoing. This research focuses on the hybrid processing of AOPs and M/F membrane to dissolve and eliminate organic chemicals in drinking water which are suspected of carcinogens. For this purpose, underground water was used as a source of drinking water for the hybrid processing of AOPs oxidation and M/F membrane, and a pilot plant test device was installed indoor. Carcinogenic chemicals of VOCs and pesticide were artificially mixed with the drinking water, which was then diluted close to natural water in order to examine treatment efficiency and draw optimal operation conditions. The samples used for this experiment include four chemicals phenol, chloroform, in VOCs and parathion, carbaryl in pesticide. As a result of the experiments conducted with simple, and compound solutions, the conditions to sufficiently dissolve and eliminate carcinogenic chemicals from the hybrid processing of where carcinogens were artificially added are : (hydrogen peroxide) prescribed solution 100 mg/L under pH 5.5~6.0, and the temperature $12{\sim}16^{\circ}C$, at the normal temperature and pressure. $d-O_3$ volume of 5.0 ppm and above and 30-40 minutes of reaction time are most appropriate and using MF/UF for membrane was ideal.

Full-scale Case Study on the Relationship between Surface Characteristics of GAC and TOC Removal (입상활성탄의 표면특성과 TOC제거와의 상관성 연구)

  • Baek, Youngae;Joe, Woohyun;Hong, Byungeui;Kim, Kwangho;Choi, Young-june
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.323-328
    • /
    • 2008
  • During the full-scale water treatment operation at "G" Water Treatment Plant in Seoul, we investigated changes in pore volume distribution and specific surface area of GAC with time. The pore volume of the used GAC decreased to the level below 0.6 cc/g while that of the brand new GAC was ranged 0.7~0.9 cc/g. The specific surface area of GAC pores changed within the range between $1100{\sim}1200m^2/g$ and $700{\sim}800m^2/g$. Bacteria attached to the surface of GAC shows a gradual increase ($0.4{\time}10^6{\sim}8.5{\time}10^6CFU/g$) under scanninig electron microscope (SEM). TOC removal was enhanced due to growth of the attached bacteria on GAC. It was found that TOC removal was closely related with physical parameters (pore volume, specific surface area) linearly under the investigated conditions. The used GAC need to be exchanged into new one or re-generated to remove organic matters (TOC) effectively from the finished drinking water.

Alcohol Volume Consumption and Drinking Frequency among High School Students According to Social Alcohol Drinking Supplier (사회적 음주제공자에 따른 고등학생의 음주량과 음주빈도)

  • Kim, Sun-Hee;Yun, Mi-Eun;Lee, Geum-Seon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.565-575
    • /
    • 2021
  • The purpose of this study was to identify the amount of alcohol and drinking frequency among high school students based on social alcohol drinking supply. The data was on 161 drinkers aged between 16 and 19 from 21 high schools across the country using a questionnaire of the International Alcohol Control(IAC) Study, which was developed in 2012. Results show that the higher the number of social suppliers offering alcoholic beverages to high school students, the greater the consumption of alcohol per episode(59.433 g for one person, 113.40 g for two, and 133.56 g for three or more people). On the other hand, alcohol consumption among 'Honsul' people, a group that drinks alone without a social drinking supplier, was 167.84 grams, higher than that of groups that receive social drinking services. As a social drinking supplier for teenagers, drinking was the highest by their father (29.3 %), while friends (25.0 %) and mothers (20.7 %) were the main drinking suppliers. In particular, the provision of drinking due to father(𝛽=-.32, t=3.55, p<.01) and mother(𝛽=.22, t=2.71, p<.01) showed statistical significance as a factor in increasing the frequency of providing social drinking in adolescents. On the other hand, partner/boy or girl friend (𝛽=-.23, t=-2.73, p<.01) was a factor in reducing the frequency of alcohol provision. Friends(𝛽=.24, t=3.02, p<.01) and senior-junior schoolmates(𝛽=.16, t=2.04, p<.05) were the factors that increase the total alcohol intake of adolescents. This is due to the increase in the frequency of alcohol provision. This suggests that alcohol harm education should be expanded from students to parents, considering the role of parents as a social drinking supplier and the link between high alcohol intake among teenagers due to senior-junior friends and schoolmates.

Effect of pore characteristics of activated carbon on adsorption of natural organic matter (활성탄의 세공이 자연유기물질의 흡착에 미치는 영향)

  • Pak, Jung-Sun;Hong, Seong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.249-255
    • /
    • 2011
  • It is complicate problem to optimize removing natural organic matter (NOM) by activated carbon in drinking water treatment because the activated carbon has heterogeneous surface area and pore structure. Seven different coals based activated carbons which have different pore structures were used in the study. Sand filtered effluents which normally used as GAC adsorber influent were used. The molecular weight distribution showed that most of the NOM was bigger than 10,000Da. In this study, systematical approaches such as characteristics of surface area and pore volume were evaluated on NOM adsorption. Especially, the adsorption capacities for NOM were evaluated by effect of micro-pores and meso-pores in surface area and pore structure. The results show that the higher ratio of meso-pore compare to the micro-pore has not only the better adsorption capacities for NOM but also the higher strongly-adsorbable fraction. Therefore, the overall adsorption capacity is increased with higher meso-pore ratio with existing of reasonable micro-pore surface area and volume.