• Title/Summary/Keyword: Drilling processing

Search Result 103, Processing Time 0.029 seconds

A study on analysis of SM55C worked-shape in the BTA drilling (BTA 드릴링에 있어서 SM55C의 가공면 형상에 관한 연구)

  • 장성화
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.84-89
    • /
    • 1998
  • BTA drilling among the deep hole drilling is using for the improvement of productivity and the high-efficient working. As the deep hole drilling with BTA drill is satisfied with the required quality by one-pass processing, more deeper hole depth, the accuracy of materials is affected by bending vibration and cutting speed. This paper is studied that the shapes of material (surface roughness, roundness) is affected by cutting condition compared actual roundness with lobe shape with modeling of computer through the experiments in the BTA drilling system with BTA drill.

  • PDF

Laser Drilling of High-Density Through Glass Vias (TGVs) for 2.5D and 3D Packaging

  • Delmdahl, Ralph;Paetzel, Rainer
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.53-57
    • /
    • 2014
  • Thin glass (< 100 microns) is a promising material from which advanced interposers for high density electrical interconnects for 2.5D chip packaging can be produced. But thin glass is extremely brittle, so mechanical micromachining to create through glass vias (TGVs) is particularly challenging. In this article we show how laser processing using deep UV excimer lasers at a wavelength of 193 nm provides a viable solution capable of drilling dense patterns of TGVs with high hole counts. Based on mask illumination, this method supports parallel drilling of up over 1,000 through vias in 30 to $100{\mu}m$ thin glass sheets. (We also briefly discuss that ultrafast lasers are an excellent alternative for laser drilling of TGVs at lower pattern densities.) We present data showing that this process can deliver the requisite hole quality and can readily achieve future-proof TGV diameters as small $10{\mu}m$ together with a corresponding reduction in pitch size.

Experimental study on micro-hole drilling of anodized aluminum using picosecond laser (피코초 레이저를 이용한 양극산화 알루미늄 미세 홀 가공의 실험적 연구)

  • Oh, B.K.;Bang, J.H.;Kim, J.K.;Lim, S.M.;Lee, S.K.;Jeong, S.H.;Hong, S.K.
    • Laser Solutions
    • /
    • v.17 no.2
    • /
    • pp.5-10
    • /
    • 2014
  • Aluminum has been widely used in the electric applications because of light metals. When mechanical element is periodically moving with contacting other surfaces, the anodizing process for aluminum is useful for avoiding the abrasive damage. The anodized element has quietly different characteristics with respect to the distribution of hardness and crystal structure. In this work, the laser drilling of anodized surface is studied experimentally. Fusion drilling method - laser drilling with inert gas blowing - is used. The effect of various process parameters (gas pressure, laser power, focus position) is investigated with respect to the hole size and circularity.

  • PDF

Parametric Study of Picosecond Laser Hole Drilling for TSV (피코초 레이저의 공정변수에 따른 TSV 드릴링 특성연구)

  • Shin, Dong-Sig;Suh, Jeong;Kim, Jeng-O
    • Laser Solutions
    • /
    • v.13 no.4
    • /
    • pp.7-13
    • /
    • 2010
  • Today, the most common process for generating Through Silicon Vias (TSVs) for 3D ICs is Deep Reactive Ion Etching (DRIE), which allows for high aspect ratio blind holes with low surface roughness. However, the DRIE process requires a vacuum environment and the use of expensive masks. The advantage of using lasers for TSV drilling is the higher flexibility they allow during manufacturing, because neither vacuum nor lithography or masks arc required and because lasers can be applied even to metal and to dielectric layers other than silicon. However, conventional nanosecond lasers have the disadvantage of causing heat affection around the target area. By contrast, the use of a picosecond laser enables the precise generation of TSVs with less heat affected zone. In this study, we conducted a comparison of thermalization effects around laser-drilled holes when using a picosecond laser set for a high pulse energy range and a low pulse energy range. Notably, the low pulse energy picosecond laser process reduced the experimentally recast layer, surface debris and melts around the hole better than the high pulse energy process.

  • PDF

Two-dimensional Laser Drilling Using the Superposition of Orthogonally Polarized Images from Two Computer-generated Holograms

  • Lee, Hwihyeong;Cha, Seongwoo;Ahn, Hee Kyung;Kong, Hong Jin
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.451-457
    • /
    • 2019
  • Laser processing using holograms can greatly improve processing speed, by spatially distributing the laser energy on the target material. However, it is difficult to reconstruct an image with arrays of closely spaced spots for laser processing, because the specklelike interference pattern prevents the spots from getting close to each other. To resolve this problem, a line target was divided in two, reconstructed with orthogonally polarized beams, and then superposed. Their optical reconstruction was performed by computer-generated holograms and a pulsed laser. With this method, we performed two-dimensional (2D) laser drilling of polyimide film, with a kerf width of $20{\mu}m$ and a total processing length of 20 mm.

Machine Vision Inspection System of Micro-Drilling Processes On the Machine Tool (공작기계 상에서 마이크로드릴 공정의 머신비전 검사시스템)

  • Yoon, Hyuk-Sang;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.867-875
    • /
    • 2004
  • In order to inspect burr geometry and hole quality in micro-drilling processes, a cost-effective method using an image processing and shape from focus (SFF) methods on the machine tool is proposed. A CCD camera with a zoom lens and a novel illumination unit is used in this paper. Since the on-machine vision unit is incorporated with the CNC function of the machine tool, direct measurement and condition monitoring of micro-drilling processes are conducted between drilling processes on the machine tool. Stainless steel and hardened tool steel are used as specimens, as well as twist drills made of carbide are used in experiments. Validity of the developed system is confirmed through experiments.

Blind Via Hole Drilling Using DPSS UV laser (DPSS UV 레이저를 이용한 블라인드 비아 홀 가공)

  • 김재구;장원석;신보성;장정원;황경현
    • Laser Solutions
    • /
    • v.6 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • Micromachining using the DPSS 3rd Harmonic Laser (355nm) has outstanding advantages as a UV source in comparison with Excimer lasers in various aspects such as maintenance cost, maskless machining, high repetition rate and so on. It also has the greater absorptivity of many materials in contrast to other IR sources. In this paper, the process for micro-drilling of blind hole in Cu/PI/Cu substrate with the DPSS UV laser and the scanning device is investigated by the experimental methods. It is known that there is a large gap between the ablation threshold of copper and that of PI. We use the Archimedes spiral path for the blind hole with different energy densities to ablate the different material. Finally, the blind via hole of diameter 100$\mu\textrm{m}$ and 50$\mu\textrm{m}$ was drilled.

  • PDF

Optimum Manufacturing Processes of Micro-drill (마이크로 드릴의 최적 생산설계)

  • Kim, Gunhoi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.109-116
    • /
    • 2002
  • Resently, reduction of industrial products in size and weight has increased by the application of micro-drill for gadgets of high precision and gave rise to a great interest in a micro-drilling. Due to the lack of tool stiffness and the chip packing, micro-drilling requires not only the robust tool structure which has not affected by the vibration, but also the effective drilling methods designed to prevent tool fracture from cutting troubles. Firstly, this paper presents a new manufacturing process of micro-drill for improving the product rate and an optimum shape of micro-drill for lengthening the tool life, and secondly suggests between tool life and drilling torque acquired in the inprocess monitoring system.

  • PDF