• Title/Summary/Keyword: Drilling process

Search Result 354, Processing Time 0.027 seconds

Stress Modeling of the Laser Drilling Process in Carbon Steel (레이저 드릴링을 통한 강판 가공 시 응력 모델링)

  • Lee, Wooram;Kim, Joohan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.857-864
    • /
    • 2013
  • A laser machining process has been applied in many manufacturing fields and it provides an excellent energy control for treating materials. However, a heat effect during laser machining can deteriorate material properties. Specifically, a thermally induced stress can be a problem in laser-machined structures on a metal surface. In this study, temperature and stress on cold-rolled carbon steel sheet machined with laser hole drilling were explored in an experimental approach and a numerical method. Stresses by temperature gradients inside the materials were generated in fast cooling. The stresses were measured by using a hole-drilling method and the material properties of carbon steel (SCP1-S) were obtained in the experiment. It was found that the stress predicted from the numerical analysis was in agreement with the stresses measured by using the hole-drilling method. The analysis can be applied for evaluating structure characteristics machined with a laser.

Estimation of Drilling Velocity for Horizontal Wells Based on Alluvial Sediment Characteristics (충적층 입자 특성을 고려한 수평집수정 굴착 속도 추정)

  • Kim, Gyoo-Bum;Lee, Jeong-Woon;Lee, Chi-Hyung
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.273-280
    • /
    • 2015
  • Delays in horizontal well drilling when encountering heterogeneous sediments can have negative effects on the construction process at a riverbank filtration site. Grain size analysis, including calculation of the coefficient of uniformity and the coefficient of curvature, was conducted on soil samples collected at each drilling depth during the process of drilling horizontal wells. These results were then used to develop a linear equation for estimating drilling velocity using the coefficient of uniformity and the coefficient of curvature as inputs. Testing of the linear equation in other horizontal wells indicates that the equation is most appropriate for coarse-sand-sized and well-sorted sediment. Because this study was conducted in a region with small- to medium-sized streams, more data are needed from larger rivers to modify the general equation. Our results will provide better estimates of drilling velocity, in turn enabling more detailed design and more effective construction management at riverbank filtration sites.

Numerical Study of Agitation Performance in a Drilling Mud Mixing Tank to Non-Newtonian Rheological Properties (시추용 머드혼합탱크의 비뉴턴 유체 모델에 대한 교반성능의 수치해석적 연구)

  • Im, Hyo-Nam;Lee, Hee-Woong;Lee, In-Su;Choi, Jae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.29-37
    • /
    • 2014
  • Non-Newtonian fluid mechanics takes charge of an important role in the oil industries. Especially in the oil well drilling process, the drilling fluid such as mud keeps the drill bit cool and clean during drilling, with suspending drill cuttings and lubricating a drill bit. The purpose of this study is to examine the effect of fluid mud rheological properties to predict different characteristics of non-Newtonian fluid in the mud mixing tank on offshore drilling platforms. In this paper, ANSYS fluent package was used for the simulation to solve the hydrodynamic force and to evaluate mud mixing time. Prediction of the power consumption and the pumping effectiveness has been presented with different operating fluid models as Newtonian and non-Newtonian fluid. The comparison between Newtonain mud model and non-Newtonian mud model is confirmed by the CFD simulation method of drilling mud mixing tank. The results present useful information for the design of the drilling mud mixing tanks and provide some guidance on the use of CFD tool for such non-Newtonian fluid flow.

Fifty Years of Scientific Ocean Drilling (1968-2018): Achievements and Future Direction of K-IODP (해양 과학시추 50년 (1968-2018): 한국의 성과 및 미래 방향)

  • KIM, GIL YOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.30-48
    • /
    • 2019
  • The year 2018 is the $50^{th}$ anniversary of scientific ocean drilling. Nevertheless, we know more about the surface of the moon than the Earth's ocean floor. In other words, there are still no much informations about the Earth interior. Much of what we do know has come from the scientific ocean drilling, providing the systematic collection of core samples from the deep seabed. This revolutionary process began 50 years ago, when the drilling vessel Glomar Challenger sailed into the Gulf of Mexico on August 11, 1968 on the first expedition of the federally funded Deep Sea Drilling Project (DSDP). DSDP followed successively by Ocean Drilling Program (ODP), Integrated Ocean Drilling Program (old IODP), and International Ocean Discovery Program (new IODP). Concerning on the results of scientific ocean drilling, there are two technological innovations and various scientific research results. The one is a dynamic positioning system, enables the drilling vessel to stay fixed in place while drilling and recovering cores in the deep water. Another is the finding of re-entry cone to replace drill bit during the drilling. In addition to technological innovation, there are important scientific results such as confirmation of plate tectonics, reconstruction of earth's history, and finding of life within sediments. New IODP has begun in October, 2013 and will continue till 2023. IODP member countries are preparing for the IODP science plan beyond 2023 and future 50 years of scientific ocean drilling. We as IODP member also need to participate in keeping with the international trend.

The Effect to Drilling by The Chemical Reaction on The Surface (표면 화학 반응이 드릴 가공에 미치는 영향)

  • 이현우;최재영;정상철;박준민;정해도;최헌종;이석우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.976-979
    • /
    • 2002
  • This research presents the new method to fabricate small features through applying chemical mechanical micro machining(C3M) for Al5052 and single crystal silicon. To improve machinability of ductile and brittle material, reacted layer was formed on the surface before micro-drilling process by chemical reaction with $HNO_3$(10wt%) and KOH(10wt%). And then workpieces were machined to compare conventional micro-drilling process with newly suggested one. To evaluate whether or not the machinability was improved by the effect of chemical condition, surface defects such as burr, chipping and crack generation were measured. Finally, it is confirmed that C3M is one of the feasible tools for micro machining with the aid of effect of the chemical reaction.

  • PDF

Numerical Analysis of the Development of an Air Conditioning Duct for Marine and Oil Drilling Ships (해양 시추선용 공조덕트 개발에 대한 수치해석)

  • Yi, Chung-Seob;Chin, Do-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.50-55
    • /
    • 2017
  • This study is about the distributions of flow in an air conditioning duct used for marine and oil drilling ships. Three-dimensional steady state turbulence was assumed as a governing equation for describing the flow in the air conditioning duct in this study. We compared the flow field with the pressure distribution according to the inlet velocity for two types of air conditioning duct, and stress and safe factors were simulated using ANSYS W/B. The result of fluid analysis showed an increased pressure drop in the duct according to the inlet velocity. Furthermore, secondary flow and complicated flow characteristics occurred at the bellows zone.

Development of Drilling Jig by Practical and Adaptive Tooling System(Part 1) - System Analysis of Part Drawing and Jig Design

  • Sim, Sung-bo;Lee, Sung-Taeg
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.104-108
    • /
    • 2000
  • Drilling Jig is the device according to industrial demand for multi manufacturing products on the growing at alarming rate. In the field of design and making for machine tool working, welding, assembling with jig and fixture for mass production is a specific division. In order to prevent the production defects the optimum design of product, fig and fixture putting in the field is very significant manufacturing method. They require analysis of many kinds of important factors, theory and practice of machine tool operating process and its phenomena, jig & fixture structure, machining condition for tool making tool materials, heat treatment of jig & fixture components, know-how and so on. In this study we designed and constructed a drilling jig of mass production and performed tryout under the Auto CAD, database, and window environment. Especially Part1 of this study is reveals with the analysis of part drawing, jig planning, jig design etc.

  • PDF

A Study on the Drilling Characteristics of a TiAlN Coated Twist Drill (TiAlN 코팅드릴의 구멍가공특성에 관한 연구)

  • Kim, Tae-Young;Shin, Hyung-Gon;Kim, Jong-Taek;Kim, Min-Ho;Lee, Han-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.29-36
    • /
    • 2004
  • An experimental study on drilling of stainless steel is conducted using TiAlN coated drills and HSS twist drills with several cutting conditions; feed rate, spindle rotational speed, and dry/wet cutting. The effects of number of hole on the thrust force are examined by cutting force measurement. The flank wear of the drills and the change of hole diameter are quantitatively observed using a vision system. It is found that the thrust force in drilling with TiAlN coated drills decrease under dry and wet machining, whereas the flank wear resistance is improved.

  • PDF