• 제목/요약/키워드: Drift ratio

검색결과 366건 처리시간 0.021초

Statistical evaluation of drift demands of rc frames using code-compatible real ground motion record sets

  • Kayhan, Ali Haydar;Demira, Ahmet
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.953-977
    • /
    • 2016
  • Modern performance-based design methods require ways to determine the factual behavior of structures subjected to earthquakes. Drift ratio demands are important measures of structural and/or nonstructural damage of the structures in performance-based design. In this study, global drift ratio and interstory drift ratio demands, obtained by nonlinear time history analysis of three generic RC frames using code-compatible ground motion record sets, are statistically evaluated. Several ground motion record sets compatible with elastic design spectra defined for the local soil classes in Turkish Earthquake Code are used for the analyses. Variation of the drift ratio demands obtained from ground motion records in the sets and difference between the mean of drift ratio demands calculated for ground motion sets are evaluated. The results of the study indicate that i) variation of maximum drift ratio demands in the sets were high; ii) different drift ratio demands are calculated using different ground motion record sets although they are compatible with the same design spectra; iii) the effect of variability due to random causes on the total variability of drift ratio demands is much larger than the effect of variability due to differences between the mean of ground motion record sets; iv) global and interstory drift ratio demands obtained for different ground motion record sets can be accepted as simply random samples of the same population at %95 confidence level. The results are valid for all the generic frames and local soil classes considered in this study.

Amplitude Dependency of Damping in Buildings and Critical Tip Drift Ratio

  • Tamura, Yukio
    • 국제초고층학회논문집
    • /
    • 제1권1호
    • /
    • pp.1-13
    • /
    • 2012
  • The importance of appropriate use of damping evaluation techniques and points to note for accurate evaluation of damping are first discussed. Then, the variation of damping ratio with amplitude is discussed, especially in the amplitude range relevant to wind-resistant design of buildings, i.e. within the elastic limit. The general belief is that damping increases with amplitude, but it is emphasized that there is no evidence of increasing damping ratio in the very high amplitude range within the elastic limit of main frames, unless there is damage to secondary members or architectural finishings. The damping ratio rather decreases with amplitude from a certain tip drift ratio defined as "critical tip drift ratio," after all friction surfaces between primary/structural and secondary/non-structural members have been mobilized.

강성저하 실험식 및 연성계수를 이용한 철근콘크리트 전단벽 구조시스템의 비탄성 하중-변위 관계식 예측 (Prediction of Inelastic Force-Displacement Relationships of Reinforced Concrete Shear Wall Systems Based on Prescribed Ductilities)

  • 홍원기
    • 전산구조공학
    • /
    • 제8권4호
    • /
    • pp.159-171
    • /
    • 1995
  • 한 cycle의 이력곡선 loop을 완전히 표현하기 위해서는 pinch force, drift offset, effective stiffness, unloading, reloading, tangential stiffness 등의 변수가 필요하게 된다. 각 이력 loop에 대해 이들 변수들은 에너지 소산정도에 따라 변위와 축력의 함수로 표현될 수 있다. 본 논문에서는 먼저 16개의 전단벽 실험에서 얻어진 이력곡선 데이타를 분석하여 앞에 기술된 모든 변수를 표준화된 변위(.DELTA/.DELTA.y)의 함수로 표현했으며 이를 바탕으로 이력곡선의 포락선으로 표현되는 힘-변위관계를 예측할 수 있는 6개의 step을 제시하였다. 제시된 기법으로 구해진 비탄성 힘-변위관계는 실험곡선과 비교되었으며 내진설계에 있어서 가장 중요한 요소중 하나인 구조물의 비탄성 힘-변위관계를 예측하는 편리한 기법으로 이용될 수 있음을 보였다.

  • PDF

Dependency of COD on ground motion intensity and stiffness distribution

  • Aschheim, Mark;Maurer, Edwin;Browning, JoAnn
    • Structural Engineering and Mechanics
    • /
    • 제27권4호
    • /
    • pp.425-438
    • /
    • 2007
  • Large changes in stiffness associated with cracking and yielding of reinforced concrete sections may be expected to occur during the dynamic response of reinforced concrete frames to earthquake ground shaking. These changes in stiffness in stories that experience cracking might be expected to cause relatively large peak interstory drift ratios. If so, accounting for such changes would add complexity to seismic design procedures. This study evaluates changes in an index parameter to establish whether this effect is significant. The index, known as the coefficient of distortion (COD), is defined as the ratio of peak interstory drift ratio and peak roof drift ratio. The sensitivity of the COD is evaluated statistically for five- and nine-story reinforced concrete frames having either uniform story heights or a tall first story. A suite of ten ground motion records was used; this suite was scaled to five intensity levels to cause varied degrees of damage to the concrete frame elements. Ground motion intensity was found to cause relatively small changes in mean CODs; the changes were most pronounced for changes in suite scale factor from 0.5 to 1 and from 1 to 4. While these changes were statistically significant in several cases, the magnitude of the change was sufficiently small that values of COD may be suggested for use in preliminary design that are independent of shaking intensity. Consequently, design limits on interstory drift ratio may be implemented by limiting the peak roof drift in preliminary design.

철골모멘트골조의 내진성능향상을 위한 층간변위조절기법 (Inter-story Drift Design Method to Improve the Seismic Performance for Steel Moment Frames)

  • 최세운;박효선
    • 한국전산구조공학회논문집
    • /
    • 제24권6호
    • /
    • pp.707-714
    • /
    • 2011
  • 층간변위율은 구조물의 내진성능을 평가하는데 널리 사용되는 지표 중의 하나이다. 지진에 의해 발생하는 층간변위율이 클수록 지진에 의한 손상이 커지는 것으로 알려져 있다. 이러한 이유로 층간변위율을 감소시키는 설계기술은 내진설계분야에서 중요한 이슈이다. 그럼에도 불구하고 현재까지는 지진하중을 받는 구조물에 대한 현실적인 층간변위설계기법이 제시되고 있지 않다. 본 연구는 재분배 기법을 이용하여 철골모멘트골조의 내진성능을 향상시키기는 최적 층간변위설계기법을 제시한다. 이 기법은 층간변위율 차이를 최소화함으로써 구조물의 층별 층간변위율을 고르게 분포시키고, 최대 층간변위율을 감소시킨다. 이 기법은 단위하중법으로 계산된 변위기여도를 이용하여 구조재의 단면성능을 재설계하기 때문에 반복적인 구조해석없이 구조물의 내진성능을 향상시킬 수 있는 장점을 가진다. 이 기법의 효율성 검증을 위해 철골모멘트골조 예제 적용을 실시하였다.

Seismic response of RC frames under far-field mainshock and near-fault aftershock sequences

  • Hosseini, Seyed Amin;Ruiz-Garcia, Jorge;Massumi, Ali
    • Structural Engineering and Mechanics
    • /
    • 제72권3호
    • /
    • pp.395-408
    • /
    • 2019
  • Engineered structures built in seismic-prone areas are affected by aftershocks in addition to mainshocks. Although aftershocks generally are lower in magnitude than that of the mainshocks, some aftershocks may have higher intensities; thus, structures should be able to withstand the effect of strong aftershocks as well. This seismic scenario arises for far-field mainshock along with near-field aftershocks. In this study, four 2D reinforced concrete (RC) frames with different numbers of stories were designed in accordance with the current Iranian seismic design code. As a way to evaluate the seismic response of the case-study RC frames, the inter-story drift ratio (IDR) demand, the residual inter-story drift ratio (RIDR) demand, the Park-Ang damage index, and the period elongation ratio can be useful engineering demand parameters for evaluating their seismic performance under mainshock-aftershock sequences. The frame models were analyzed under a set of far-field mainshock, near-fault aftershocks seismic sequences using nonlinear dynamic time-history analysis to investigate the relationship among IDR, RIDR, Park-Ang damage index and period ratio experienced by the frames. The results indicate that the growth of IDR, RIDR, Park-Ang damage index, and period ratio in high-rise and short structures under near-fault aftershocks were significant. It is evident that engineers should consider the effects of near-fault aftershocks on damaged frames that experience far-field mainshocks as well.

실험자료를 기반한 국내 원형단면 철근콘크리트 휨교각의 손상수준 별 횡변위비 산정 (Estimation of Drift Ratio by Damage Level for Flexural RC Piers With Circular Cross-Section Based on Experimental Data in Korea)

  • 남현웅;홍기증;김익현
    • 한국지진공학회논문집
    • /
    • 제26권6호
    • /
    • pp.255-265
    • /
    • 2022
  • In order to determine fragility curves, the limit state of piers for each damage level is suggested in this paper based on the previous test results in Korea, including our test results. In previous studies, the quantitative measures for damage levels of piers have been represented by curvature ductility, lateral drift ratio, or displacement ductility. These measures are transformed to lateral drift ratios of piers for consistency, and the transformed values are compared and verified with our push-over test results for flexural RC piers with a circular cross-section. The test specimens are categorized concerning the number of lap-splices in the plastic hinge region and whether seismic design codes are satisfied or not. Based on the collected test results in Korea, including ours, the lateral drift ratio for each pier damage level is suggested.

구조실험을 통한 철근콘크리트구조의 내진성능 평가 (Evaluation on Seismic Capacity of reinforced Concrete Structure Based on Structural Testing)

  • 서수연
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.308-318
    • /
    • 2000
  • This paper introduces the acceptance criteria for reinforced concrete moment frames based on structural testing of ACI in preparing and proposes criteria for acceptable limiting drift and energy dissipation ratios of reinforced concrete shear walls for structural testing. Limiting drift and energy dissipation ratios were examined for tests on shear walls having ductile type failures. Test data were analyzed and compared to results for a suggested acceptance criteria that involves a limiting drift that is a function of aspect ratio a limiting energy dissipation ratio that is a function of displacement ductility and damping.

  • PDF

GLR Charts for Simultaneously Monitoring a Sustained Shift and a Linear Drift in the Process Mean

  • Choi, Mi Lim;Lee, Jaeheon
    • Communications for Statistical Applications and Methods
    • /
    • 제21권1호
    • /
    • pp.69-80
    • /
    • 2014
  • This paper considers the problem of monitoring the mean of a normally distributed process variable when the objective is to effectively detect both a sustained shift and a linear drift. The design and application of a generalized likelihood ratio (GLR) chart for simultaneously monitoring a sustained shift and a linear drift are evaluated. The GLR chart has the advantage that when we design this chart, we do not need to specify the size of the parameter change. The performance of the GLR chart is compared with that of other control charts, such as the standard cumulative sum (CUSUM) charts and the cumulative score (CUSCORE) charts. And we compare the proposed GLR chart with the GLR charts designed for monitoring only a sustained shift and for monitoring only a linear drift. Finally, we also compare the proposed GLR chart with the chart combinations. We show that the proposed GLR chart has better overall performance for a wide range of shift sizes and drift rates relative to other control charts, when a special cause produces a sustained shift and/or a linear drift in the process mean.

Fragility assessment of buckling-restrained braced frames under near-field earthquakes

  • Ghowsi, Ahmad F.;Sahoo, Dipti R.
    • Steel and Composite Structures
    • /
    • 제19권1호
    • /
    • pp.173-190
    • /
    • 2015
  • This study presents an analytical investigation on the seismic response of a medium-rise buckling-restrained braced frame (BRBF) under the near-fault ground motions. A seven-story BRBF is designed as per the current code provisions for five different combinations of brace configurations and beam-column connections. Two types of brace configurations (i.e., Chevron and Double-X) are considered along with a combination of the moment-resisting and the non-moment-resisting beam-to-column connections for the study frame. Nonlinear dynamic analyses are carried out for all study frames for an ensemble of forty SAC near-fault ground motions. The main parameters evaluated are the interstory and residual drift response, brace displacement ductility, and plastic hinge mechanisms. Fragility curves are developed using log-normal probability density functions for all study frames considering the interstory drift ratio and residual drift ratio as the damage parameters. The average interstory drift response of BRBFs with Double-X brace configurations significantly exceeded the allowable drift limit of 2%. The maximum displacement ductility characteristics of BRBs is efficiently utilized under the seismic loading if these braces are arranged in the Double-X configurations instead of Chevron configurations in BRBFs located in the near-fault regions. However, BRBFs with the Double-X brace configurations exhibit the higher interstory drift and residual drift response under near-fault ground motions due to the formation of plastic hinges in the columns and beams at the intermediate story levels.