• Title/Summary/Keyword: Drift net

Search Result 59, Processing Time 0.019 seconds

Characteristics on the fishing performance of a drift net for yellow croaker (Larimichthys polyactis) in accordance with the thickness of a net twine (참조기 유자망어업에 있어서 그물실의 굵기 변화에 따른 어획성능 특성)

  • Kim, Seonghun;Park, Seong-Wook;Lee, Kyounghoon;Lim, Ji-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.3
    • /
    • pp.218-226
    • /
    • 2013
  • The objective of this study is to estimate the optimal net twine thickness of drift net for yellow croaker. The filed experiments of the fishing performance were conducted with three kinds of drift net with different monofilament diameters (No.3=0.284mm, No.4=0.330mm, No.5=0.370mm) the total eight times in the southwest coastal sea of Korea. And the physical properties tests on the monofilaments of experimental net were carried out to estimated breaking load and softness in dry and wet conditions, respectively. From the results, the No.3 mono. was the strongest break load per unit area in dry and wet conditions. And the softness showed that the No. 3 mono. was the most soft than another experimental monofilaments. The fishing performance was; the No. 3 drift net showed the most catches. Conversely, the catches of No. 4 and No. 5 drift net showed the half on the catches of No. 3 drift net. Consequently, the diameter of monofilament in the drift net for yellow croaker should carefully choose to consider the economic sides such as the amount of catches and the cost of catches.

Fishing performance of a coastal drift net in accordance with materials of the environmentally-friendly biodegradable net twine (친환경 생분해성 그물실의 재질에 따른 연안 유자망의 어획성능 특성)

  • KIM, Seonghun;KIM, Pyungkwan;JEONG, Seongjae;BAE, Jaehyun;LIM, Jihyun;OH, Wooseok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.2
    • /
    • pp.97-106
    • /
    • 2018
  • The objective of this study was to estimate physical properties and fishing performances of net twine with improved PBS copolymer resin (Bio-new), the existing PBS/PBAT blending resin (Bio-old) and commercial Nylon (Nylon). The tensile strength of Bio-new monofilament was equal to Bio-old and the elongation of Bio-new was about 6 % higher than that of Bio-old in wet condition. The physical properties tests were carried out to estimate breaking load and stiffness in dry and wet conditions, respectively. In the results, the breaking load of Nylon netting was the highest whereas the elongation of Bio-new was 1.4 times higher than that of Nylon netting in wet condition. The breaking load of Bio-old netting was about 9.2 % higher than that of Bio-new netting. However, the elongation of the Bio-new netting was about 3% higher than that of Bio-old. The stiffness of the Bio-new compared to Bio-old was improved about 34 % in dry condition and about 32 % in wet condition. The filed experiments of the fishing performance were conducted with three kinds of drift nets with different netting materials in the coastal sea of Jeju. The each experimental drift net made of different materials showed the similar fishing performance. Bio-old drift net yielded less catches of small sized yellow croaker than other drift nets. The netting materials affected the fishing performance and length distribution of catches in the drift nets.

Fishing characteristics of small yellow croaker drift gill net by net height (참조기 유자망의 설 높이에 따른 어획특성)

  • Oh, Taeg-Yun;Cho, Young-Bok;Seo, Young-Il;Kim, Byung-Yeob;Lee, Chang-Heon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.3
    • /
    • pp.368-377
    • /
    • 2014
  • Small yellow croaker is one of the important stocks in Korean waters. In this study, we conducted sea trials to estimate optimum height of a drift gill net for effective fishing of small yellow croaker. In the trial using existing net which has 9.2m in height, there was 22 species (1,180 fishes, 99.9kg) caught. The catch (in individuals) of small yellow croaker, especially larger fishes (over 22cm in FL), was higher as part of net height is higher, while the number of species bycaught and the catch of those species were higher as part of net height is lower. In the trial using extension net which has 18.4m in height, there was 27 species (2,030 fishes, 151.7kg). It showed same pattern with existing net in the section I to III, however, in the section IV which is over 13.8m of net height, the catch sharply decreased. The number of species bycaught and the catch of those species using extension net were also same as results using existing net. It showed that section III (9.2-13.8m) where is upper-middle part of the net has caught most of catch and large fishes having over 22cm in length. Through these results, it is judged that the setting depth of the net where is 4.6-13.8m above the sea bottom is the best to reduce bycatch and catch much more large size fishes, and the catch per net is proportional to filtering area of net. Therefore the Fisheries Resource Management Act (the clause 1, article 10) on the amount of usage for offshore drift gill net need to be considered not only length of a net but also net height.

Mesh Selectivity of Drift Gill Net for Yellow Croaker, Larimichthys polyactis, in the Coastal Sea of Gageo-do (가거도 인근해역 참조기(Larimichthys polyactis) 유자망의 망목선택성)

  • Kim, Seong-Hun;Park, Seong-Wook;Bae, Jae-Hyun;Kim, Yeong-Hye
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.5
    • /
    • pp.518-522
    • /
    • 2009
  • The mesh selectivity of drift gill net for yellow croaker (Larimichthys polyactis) was examined in field experiments with six different net mesh size (40, 45, 50, 55, 60 and 65 mm) from April to December, 2008 in the northwestern coastal waters of Gageo-do, Korea. The total catch of 8,091 consisted of yellow croaker (n=7,574; 89.5% of total catch), common mackerel (n=162; 4.8%) and other species (n=355; 5.8%). The selectivity curve for the small size yellow croaker was fit by Kitahara's method to the polynomial equation S(R)=exp{($-0.552R^3$+$4.927R^2$-11.591R+9.320)-6.717}. The optimal mesh size for 50% retention for minimum landing size(191mm) of yellow croaker was estimated as 51.1 mm. This is very similar to the current drift net mesh size used in Gageo-do.

A Study of the Efficiency of the Labor-saving-type, Five-step-drum Net Hauler (생력형 5단 유자망 양망기의 효율성에 관한 연구)

  • Koo, Myung-Sung;Kim, Suk-Jong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.1
    • /
    • pp.98-107
    • /
    • 2014
  • As part of a series of studies about improving yellow croaker drift gill net fishing gear and the development of a labor-saving fishing system, we installed a labor-saving-type, five-step-drum net hauler, and a triple-V-type net hauler in 108 Daeheung-ho, a fishing boat which operates drift gill nets for yellow croakers mainly in the sea near Chu-ja Island. Net damage with the labor-saving-type, five-step-drum net hauler is lower than for the triple-V-type net hauler. In addition, there was a reduction in the standard operational crew of two people. The lead time for hauling the labor-saving net was approximately 10% and 19.2% less than for hauling the triple-V-type net hauler and for hauling by hand, respectively. It was found that there were fewer slip in fishing gear and less damage to the wing of the drum as well as less damage to the fish when the labor-saving-type, five-step-drum net hauler was used than when the triple-V-type net hauler was used. In the survey, the lead time for hauling the net was approximately 21.6% and 45.2% more effective than hauling with the triple-V-type net hauler and hauling by hand, respectively. The crew was reduced by approximately 18.2% and 25% than when hauling with the triple-V-type net hauler and hauling by hand, respectively. In addition, cessation of operation and damage to the fish were reduced when compared to the triple-V-type net hauler and hauling by hand.

Development of fishing gear and fishery operation system for the croaker drift gill net 2. Performance tests of labor saving type model net hauler (조기유자망 어구의 개량 및 생력화 조업시스템 개발 2. 생력형 모형 양망기의 성능 시험)

  • Kim, Suk-Jong;Koo, Myung-Sung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.3
    • /
    • pp.199-206
    • /
    • 2005
  • As the basic study about improvement of yellow croaker drift gill net fishing implement and development of the fishing system, this study drew problem after synthetically analyzing hauling system of yellow croaker drift gill net used in the coast of Chuja Island and tested several characters and analyzed in hauling process with 5 step net hauler model for improving the problem. The analysis results are as follows. When the angle between axises of drum centers was small, it showed the tendency that hauling time was fast. Hauling time was faster when drum was 5 step rather than 3 step. When drum was 5 step, slippery phenomenon was small and hauling was stable. Tension was larger when drum was 5 step rather than 3 step. When drum was 5 step, the range of change of the maximum and minimum value was small and hauling was stable. When drum was 3 step, there was following formula between hauling time ($Ht_3$) and angle between axises of drum centers ($A_g$) $Ht_3$ : ($7.15Hs^{-0.81}$) $A_g^{-0.81}$, when drum was 5 step there was following formula.$Ht_5$ : ($6.45Hs^{-0.75}$) $A_g0.10$, here, Hs is hauling speed. When drum was 3 step and hauling speed was 28cm/sec, tension was $T=0.08A_8^3-1.60A_g^3-0.49A_g+369.56(r=0.99)$, when drum was 5 step, tension was, $T=-0.01A_g^3+1.96A_g^2-34.05A_g+414.58$ (r-0.99), here, T was tension(g).

The estimation of the optimum mesh size selectivity of a drift net for yellow croaker (Larimichthys polyactis) using by the SELECT model (참조기 (Larimichthys polyactis) 유자망에 있어서 SELECT모델에 의한 적정 망목선택성 곡선 추정)

  • Kim, Seong-Hun;Park, Seong-Wook;Lee, Kyoung-Hoon;Yang, Yong-Su
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.1
    • /
    • pp.10-19
    • /
    • 2012
  • The mesh selectivity of a drift net for yellow croaker (Larimichthys polyactis) was examined in field experiments with six different net mesh size (40, 45, 50, 55, 60 and 65mm) from April to December, 2008 in the coastal areas of Jeollanam-do in Korea. The total catch of 6,748 consisted of yellow croaker (n=6,310; 89.1% of total catch), common mackerel (n=158; 5.6%) and other species (n=280; 9.6%). The selectivity curve for yellow croaker was fit by the models of selectivity curve in SELECT method. The optimal mesh size for 50% retention for minimum landing size (191mm) of yellow croaker was estimated as 49.6mm-51mm by selectivity curves. And the bi-normal model for the selectivity curve was found to fit the data best.

Classification of Fishing Gear (어구의 분류)

  • 김대안
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.1
    • /
    • pp.33-41
    • /
    • 1996
  • In order to obtain the most favourable classification system for fishing gears, the problems in the existing systems were investigated and a new system in which the fishing method was adopted as the criterion of classification and the kinds of fishing gears were obtained by exchanging the word method into gear in the fishing methods classified newly for eliminating the problems was established. The new system to which the actual gears are arranged is as follows ; (1)Harvesting gear \circled1Plucking gears : Clamp, Tong, Wrench, etc. \circled2Sweeping gears : Push net, Coral sweep net, etc. \circled3Dredging gears : Hand dredge net, Boat dredge net, etc. (2)Sticking gears \circled1Shot sticking gears : Spear, Sharp plummet, Harpoon, etc. \circled2Pulled sticking gears : Gaff, Comb, Rake, Hook harrow, Jerking hook, etc. \circled3Left sticking gears : Rip - hook set line. (3)Angling gears \circled1Jerky angling gears (a)Single - jerky angling gears : Hand line, Pole line, etc. (b)Multiple - jerky angling gears : squid hook. \circled2Idly angling gears (a)Set angling gears : Set long line. (b)Drifted angling gears : Drift long line, Drift vertical line, etc. \circled3Dragged angling gears : Troll line. (4)Shelter gears : Eel tube, Webfoot - octopus pot, Octopus pot, etc. (5)Attracting gears : Fishing basket. (6)Cutoff gears : Wall, Screen net, Window net, etc. (7)Guiding gears \circled1Horizontally guiding gears : Triangular set net, Elliptic set net, Rectangular set net, Fish weir, etc. \circled2Vertically guiding gears : Pound net. \circled3Deeply guiding gears : Funnel net. (8)Receiving gears \circled1Jumping - fish receiving gears : Fish - receiving scoop net, Fish - receiving raft, etc. \circled2Drifting - fish receiving gears (a)Set drifting - fish receiving gears : Bamboo screen, Pillar stow net, Long stow net, etc. (b)Movable drifting - fish receiving gears : Stow net. (9)Bagging gears \circled1Drag - bagging gears (a)Bottom - drag bagging gears : Bottom otter trawl, Bottom beam trawl, Bottom pair trawl, etc. (b)Midwater - drag gagging gears : Midwater otter trawl, Midwater pair trawl, etc. (c)Surface - drag gagging gears : Anchovy drag net. \circled2Seine - bagging gears (a)Beach - seine bagging gears : Skimming scoop net, Beach seine, etc. (b)Boat - seine bagging gears : Boat seine, Danish seine, etc. \circled3Drive - bagging gears : Drive - in dustpan net, Inner drive - in net, etc. (10)Surrounding gears \circled1Incomplete surrounding gears : Lampara net, Ring net, etc. \circled2Complete surrounding gears : Purse seine, Round haul net, etc. (11)Covering gears \circled1Drop - type covering gears : Wooden cover, Lantern net, etc. \circled2Spread - type covering gears : Cast net. (12)Lifting gears \circled1Wait - lifting gears : Scoop net, Scrape net, etc. \circled2Gatherable lifting gears : Saury lift net, Anchovy lift net, etc. (13)Adherent gears \circled1Gilling gears (a)Set gilling gears : Bottom gill net, Floating gill net. (b)Drifted gilling gears : Drift gill net. (c)Encircled gilling gears : Encircled gill net. (d)Seine - gilling gears : Seining gill net. (e)Dragged gilling gears : Dragged gill net. \circled2Tangling gears (a)Set tangling gears : Double trammel net, Triple trammel net, etc. (b)Encircled tangling gears : Encircled tangle net. (c)Dragged tangling gears : Dragged tangle net. \circled3Restrainting gears (a)Drifted restrainting gears : Pocket net(Gen - type net). (b)Dragged restrainting gears : Dragged pocket net. (14)Sucking gears : Fish pumps.

  • PDF

A study on the mesh selectivity of hairtail (Trichiurus lepturus) caught by coastal drift gill net (연안 유자망에 의한 갈치(Trichiurus lepturus)의 망목 선택성에 관한 연구)

  • KIM, Seonghun;KIM, Pyungkwan;JEONG, Seong-Jae;LEE, Kyounghoon;OH, Wooseok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.4
    • /
    • pp.285-293
    • /
    • 2019
  • The mesh selectivity of hairtail (Trichiurus lepturus) caught by coastal drift gill net was examined in field experiments with three different mesh sizes (45, 50 and 55 mm) from October to November, 2013 in the coastal areas of south-west of Jeju province. The mesh selectivity tests were conducted with the experimental net to be set middle part of conventional driftnets. The mesh selectivity tests were carried out the total of four times. The selectivity curve was estimated by the Kitahara's and Fujimori's method. In the results, the catch number of hairtail was 653 (125.8 kg) and occupied 34.8% in total catches weight. The optimal mesh size for 50% selection on the minimum landing size (180 mm, AL) and the first maturity size (260 mm, AL) of hairtail were estimated as 47.2 mm and 64.5 mm by master selectivity curves, respectively.

Tidal and Sub-tidal Current Characteristics in the Kangjin Bay, South Sea, Korea

  • Ro, Young-Jae
    • Ocean Science Journal
    • /
    • v.42 no.1
    • /
    • pp.19-30
    • /
    • 2007
  • This study analyzed the current meter records along with wind records for over 500 days obtained in the Kangjin Bay, South Sea, Korea spanning from March, 2003 to Nov. 2005. Various analyses include descriptive statistics, harmonic analysis of tidal constituents, spectra and coherence, the principal axis, progressive vector diagrams. These analyses can illustrate the response of residual current to the local wind resulting in the net drift with rotational motion. Current speed ranges from -28 to 33 (cm/sec), with standard deviations from 6.5 to 12.9 (cm/sec). The harmonic analyses of the tidal current show the average form number, 0.12 with semi-diurnal type and the rectilinear orientation of the major axis toward northeast. The magnitudes of the semi-major range from 12.7 to 17.7 (cm/sec) for M2 harmonics, while for S2 harmonics, they range from 6.3 to 10.4 (cm/sec), respectively. In the spectral and coherency analysis of residual current and wind, a periodicity of 13.6 (day) is found to be most important in both records and plays an important role in the net drift of residual current. The progressive vector diagrams of residual current and wind show two types of behaviors such as unidirectional drift and rotational motion. It was also found that 3 % rule holds approximately to drive 1 (cm/sec) drift current by 30 (cm/sec) wind speed based on the correlation of the semi-major axis of wind and residual current.