• Title/Summary/Keyword: Dredged sediment

Search Result 73, Processing Time 0.034 seconds

Economical Feasibility of the Treatment Methods of the Dredged Sediments from Contaminated Agricultural Reservoirs (농업용 저수지 준설토의 처리 공법에 따른 경제성 분석)

  • Oh, Kyoung-Hee;Cho, Young-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.756-762
    • /
    • 2013
  • The economical feasibility was conducted to find the adequate method to treat the dredged sediments from agricultural reservoirs in a pilot project that had been operated to improve the quality of water and benthic environments by dredging of contaminated sediments. For benefit/cost (B/C) analysis, the net expenses were considered as the costs of project, and the benefits were calculated from the saving of waste-treatment cost through reuse of dredged sediment, the saving of construction cost of settling pond, and the values of retained water by dredging. Although the economic feasibility depended on the sites of operation, the average B/C value of the pilot project was estimated as 1.32, indicating this project is economically feasible. Depending on the treatment methods, the B/C values were in the order of the methods of coagulating sedimentation, machinery dewatering, stabilization through exothermic reaction, and soil improvement and stabilization. The machinery dewatering method is estimated as the most adequate one to treat the dredged sediments because of the minimum riskiness of secondary pollution, the recyclability, and its economic feasibility.

Significance of Biomarkers in the Assessment of Dredged Materials for Beneficial Reuses and Disposal (준설물질 유효활용 및 처분을 위한 평가에 있어 생체지표 활용의 재고)

  • Won, Eun-Ji;Choi, Jin Young;Kim, Kyoungrean
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.466-476
    • /
    • 2016
  • Dredging is inevitably necessary for the management of water infrastructure such as waterways and polluted bottom sediment. Dredged material management options may be offshore dumping, wetland creation, beach nourishment and various other engineering uses depending on the given circumstances at the time of dredging. Among those options, wetland creation and beach nourishment are the preferred ones in Korea considering significant loss of wetland and beach erosion due to various development projects along the coastal region. In order to use dredged material beneficially, however, dredged material needs to be assessed its suitability with respect to its engineering purpose and environmental criteria. In this paper, we demonstrate that environmental risk of dredged material to be introduced into the marine environment can be easily assessed using biomarkers with relative low cost. Biomarkers can also compliment pollutant contents analysis that may not be specific to their impact on biological response. Biomarker information may be used to assist decision making process in selecting suitable treatment or beneficial use options for dredged materials.

Investigation of Reducing Characteristics for the Spreading of Dredging Soil and the Diffusion of Contaminant by Silt Protector Curtain through Three Dimensional Numerical Model Experiment (3차원 수치모형실험을 통한 오탁방지막의 오염물질 및 준설토 확산 저감특성 조사)

  • Hong, Nam-Seeg
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.78-85
    • /
    • 2010
  • This study investigates reducing characteristics for the spreading of dredged soil and the diffusion of contaminant by silt protector curtain through three dimensional numerical experiment. The numerical medel is modified by combining the sediment transport characteristics for cohesive sediment into the previously developed model. Several numerical experiments have been given in order to investigate the reducing effect of silt protector using two dimensional numerical channel model under various parameters such as upstream flow velocity, depth of silt curtain and the position of dumped materials. Through the evaluation of several simulation results, we knew that the careful design has to be given in the determination of depth and position of silt protector.

The Sediment Transport Pattern from a Large Industrial Complex to an Enclosed Bay

  • Kwon, Young-Tack;Lee, Chan-Won
    • Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.69-72
    • /
    • 2008
  • The movement of sediments in the stream crossing a large industrial complex to the mouth of Masan Bay was monitored for eight years. Sediment samples were seasonally collected in the period of $1992{\sim}1997$ and $2001{\sim}2002$. The heavy metal content of sediment was found to be higher at dry season with the peak on February and significantly decreased at rainy season. Metals content in stream sediments were rapidly decreased by large precipitation events in rainy season because the contaminants in the upstream sediments were transported to the dredged area of Masan Bay where is a typical enclosed bay in Korea. The increasing and decreasing tendency of heavy metals in sediment was repeatedly observed for six consecutive years. The heavy metals assessment of stream sediment provide us the information about the pollutant source, transport pattern and control strategy along the industrial complex. It was strongly suggested that the transportable stream sediments of an industrial area should be controlled as one of the important strategies to restore and manage the enclosed bay. Combined wastewaters have been collected and treated in a publicly owned treatment works (POTW) after industrial wastewater treatment at each location of industries since 1994. A field study was conducted to investigate the pollutant removal efficiency and performance of contact oxidation system installed and operated in two locations in the stream. The stream sediment quality was improved since then, and as a consequence the habitat of the estuary has been restored.

Evaluation of Heavy Metal Pollution in the Dumping Site of the Dredged Sediment, Masan Bay (마산만 오염퇴적물 준설토 투기해역의 중금속 오염평가)

  • Kwon Young-Tack
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.2
    • /
    • pp.75-81
    • /
    • 2004
  • A large amount 2.1×106 ㎥ of the polluted sediment was dredged from the Masan Bay and deposited in Gapo confined area, Masan. The dissolved metal concentrations of seawater in the dumping site (Gapo area) were observed during one tidal cycle and compared with those of seawater obtained from Jinhae Bay. The sediment was evaluated as from Non polluted to Moderately polluted by USEPA standards. It was judged that toxicological effects of sediment analyzed ranged from ERL to ERM with copper and zinc, and ERL with cadmium, chrome, lead, and nickel by the Adverse Biological Effects. The pollutant concentration was low in surface sediment compared to deeper sediment since the sediments with relatively low concentrations of pollutant were dumped to the surface. The pollutant concentration was low in surface sediment compared to deeper sediment since the sediments with relatively low concentrations of pollutant were dumped to the surface. The benthic organisms in Gapo area had higher concentrations of trace metals (Oyster: Zn 238.96, Cu 5.29 ㎍/g wet wt., Clam: Zn 17.71, Cu 1.00 ㎍/g wet wt., Mussel. Zn 187.98, Pb 0.28, Cr 0.15, Mn 4.23, Sr 1.45 and Fe 100.33 ㎍/g wet wt.) compared to outside of dumping site. However, the trace metal level in the bivalves was less than the NFPQIS (National Fisheries Products Quality Inspection Service) standard.

  • PDF

Adsorption of nitrate from contaminated sea water with activated dredged sediment (오염해수로부터 질산염의 제거를 위한 전처리 퇴적물의 흡착특성)

  • Song Young-Chae;Woo Jung-Hui;Jung Eun-Hye;Go Sung-Jung;Kim Dong-Geun
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.589-593
    • /
    • 2005
  • A laboratory study on the adsorption of nitrate in polluted coastal water using various materials including several types of dredged sediments(ST) and yellow c1ays(YC), which are activated by heat(HT), bioleaching for heavy metal removal(BL) and neutralization(NR) was performed. The equilibrium time of the adsorption for the sediment bioleached and treated by heat(BL-HT-ST) was only 17min which was faster than the sediment bioleached, neutralized and treated by heat(BL-NR-HT-S) (25min) or the sediment treated by the bioleaching process(BL -ST)(27min), but longer equilibrium times for yellow c1ay(YC) or heat treated yellow day(HT- YC) were required. The adsorption processes of nitrate in sea water for tested material could be described by Freundlich isotherm, but were significantly affected by surface characteristics of the materials. The adsorption capacities for raw sediment and heat treated sediment were 2.12 and 2.19mg NO3-N/g, respectively, which were higher than others, indicating that the sediment activated by heat could be used as a material for the improvement of nearshore water quality.

Adsorption of nitrate from contaminated sea water with activated dredged sediment (오연해수로부터 질산염의 제거를 위한 개질 퇴적물의 흡착특성)

  • Song, Young-Chae;Woo, Jung-Hui;Jung, Eun-Hye;Go, Sung-Jung;Kim, Dong-Geun;Park, In-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.311-316
    • /
    • 2005
  • A laboratory study on the adsorption of nitrate contaminated in nearshore water using various materials including several types of dredged sediments(ST) and yellow clays(YC), which are activated by hear(HT), bioleaching for heavy metal removal(BL) and neutralization(NR) was performed. The equilibrium time of the adsorption for the sediment bioleached and treated by heat(BL-HT-ST) was only 17min. which was faster than the sediment bioleached, neutralized and treated by heat(BL-NR-HT-S) (25min) or the sediment treated by the bioleaching process(BL-ST)(27min), but longer equilibrium times for yellow clay(YC) or heat treated yello clay(HT-YC) were required. The adsorption processes of nitrate in sea water for tested material could be described by Freundlich isotherm, but were significantly affected by surface characteristics of the materials. The adsorption capacities for raw sediment and heat treated sediment were 2.12, 2.19mg $NO_{3}$-N/g, respectively, which were higher than others, indicating that the sediment activated by heat could be used as a material for the improvement of nearshore water quality.

  • PDF

A Study on the Shape and Cone Resistance of Dredged Fill in Geotextile Tube under Water and Drained Conditions (준설토의 퇴적형상과 수침조건에 따른 토목섬유 튜브 내 준설토의 콘 저항치에 관한 연구)

  • Kim, Hyeong Joo;Won, Myoung Soo;Lee, Jang Baek;Kim, Young Shin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.85-96
    • /
    • 2016
  • A series of tests were conducted to examine the filled tube shape with respect to the filling module type used and to investigate cone resistance properties of a dredged-soil-filled geotextile tube under water and drained conditions. Results based on the filling observation showed that the distribution of the accumulated fills inside the acrylic cell and vinyl tubes differs with respect to the type of filling modules. A crater formation around the inlet area was found during the test using I-type filling module and a horizontal sediment distribution was found during the test using inverse T-Type filling module. The dredged fill material was obtained from the Saemangeum area. The geotextile tube deformation of each filling stage was almost converged when the tube was fully drained. The cone resistance of the dredged fill in the geotextile tube under drained condition is large and is approximately 2~6 times that of the tube under water condition.

A Study on the Sediment Volume Change and Two-dimensional Deposited Characteristics of Pumping-dredged Soil (준설토의 체적변화 및 2차원 퇴적특성에 관한 연구)

  • 김형주;이민선;이용주;김대우
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.155-165
    • /
    • 2003
  • A series of one-dimensional cylinder sedimentation test, seepage consolidation test and two-dimensional deposition model test were conducted to examine the characteristics of deposition and volume change of dredged soils containing the high water content, and these experimental results were compared with the sedimentary conditions of actual dredged-reclaimed fields to obtain the relations of a volume change by settling what is required for design. In addition, the change of water content and the distribution of fine grained soils after sedimentation were investigated. Thus, it was concluded that deposition height increased lineary as substantial soil volume increased, and also the elevation of interface increasea proportionately at both the starting time and the finishing time of virtual self-weight consolidation in one-dimensional sedimentation. Furthermore, the two-dimensional model test results were shown to describe the plain distribution of water content and fine grained silt where dredged soil was deposited by two dimensional flowing, and the water content was distributed to wide range from the minimum water content 30% to maximum 180% according to the passed amount of №200 sieve percentage.

Experimental Study on the Adjustment Processes of a Series of Mining Pits in the Dredged Channels (준설하천에서 직렬로 배열된 웅덩이의 적응에 관한 실험적 연구)

  • Jang, Chang-Lae;Lee, Gi-Ha
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.385-395
    • /
    • 2011
  • The adjustment processes and responses of a series of mining pits by sand or gravel mining were investigated by laboratory experiments. The filling processes of the two pits were affected by the bars developed in the upstream of the channel. However, the bars were not developed and the bed was degradated in the downstream of the pits due to little sediment flow, which was trapped in the pits. The submerged angle of repose in the pits was nearly constant when the pits were being filled. After the filling processes of the pits were finished, the pit was speedily filled with sediment, and the bed was aggradated and migrated with speed. However, the angle of repose decreased. As the distance between the upstream pit and the downstream pit increased, the bed of the pit downstream was tailcutted and degradated. The migration speed of the pit decreased. However, the dimensionless pit depth increased as the distance between the pits increased. The dimensionless pit depth increased with time.