• Title/Summary/Keyword: Dredged sediment

Search Result 73, Processing Time 0.022 seconds

Development of the Dredged Sediments Management System and Its Managing Criteria of Debris Barrier (사방댐 준설퇴적물 관리시스템 개발 및 관리기준 제안)

  • Song, Young-Suk;Yun, Jung-Mann;Jung, In-Keun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.267-275
    • /
    • 2018
  • The dredged sediment management system was developed to have an objective, quantitative and scientific decision for the optimum removal time of dredged sediments behind debris barrier and was set up at the real site. The dredged sediment management system is designed and developed to directly measure the dredged sediments behind debris barrier in the field. This management system is composed of Data Acquisition System (DAS), Solar System and measurement units for measuring the weight of dredge sediments. The weight of dredged sediments, the water level and the rainfall are measured in real time using the monitoring sensors, and their data can be transmitted to the office through a wireless communication method. The monitoring sensors are composed of the rain gauge to measure rainfall, the load cell system to measure the weight of dredged sediments, and water level meter to measure the water level behind debris barrier. The management criteria of dredged sediments behind debris barrier was suggested by using the weight of dredged sediments. At first, the maximum weight of dredged sediments that could be deposited behind debris barrier was estimated. And then when 50%, 70% and 90% of the maximum dredged sediments weight were accumulated behind debris barrier, the management criteria were divided into phases of Outlooks, Watch and Warning, respectively. The weight of dredged sediments can be monitored by using the dredged sediment management system behind debris barrier in real time, and the condition of debris barrier and the removal time of dredged sediments can be decided based on monitoring results.

An Experimental Study on Engineering Characteristics of Wet Dredged Soil and Dry Dredged Soil after Chemical Treatment (습윤준설토와 노건조준설토의 약품처리 후 공학적 특성에 관한 실험적 연구)

  • Chang, Yongchai;Park, Kiyoun;Park, Jongcheol;Lee, Ingyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.3
    • /
    • pp.71-76
    • /
    • 2012
  • Since sediment in a stable state is disturbed during the process from sediment in a natural state to dredged soil, the turbidity of water is not good. When the dredged soil settles again, the volume change in the sediment occurs. Coagulant and flocculant are added for turbidity mitigation of the water and faster settling process of suspended solid, and the amount of the substances affects the characteristics of the dredged soil. This study is to investigate the characteristics of the dredged soil depending on the amount of three chemical products added to the wet dredged soil and the dry dredged soil through measuring the suspended solids (SS), volume change and sedimentation velocity. The experimental measurements show that the SS decreased, the volume change rate increased, and the sedimentation velocity increased, as the chemical amount increased. In addition, it was found that the dry dredged soil reacted even with little quantity of the chemicals because derelict and microorganism are removed due to the drying process at $100{\pm}5^{\circ}C$.

Diagnosis for Status of Dredging and Ocean Disposal of Coastal Sediment in Korea (우리나라 연안준설 및 준설토 해양투기 현황 진단)

  • Eom, Ki-Hyuk;Lee, Dae-In;Park, Dal-Soo;Kim, Gui-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.3
    • /
    • pp.185-193
    • /
    • 2009
  • This study documented and diagnosed the status and problems of coastal dredging and offshore disposal of dredged sediments in South Korea to improve assessment procedures for marine environmental impacts and develop effective management systems. A total of $729({\times}10^6)m^3$ of coastal sediment was dredged in the harbors during the period of 2001-2008. Most of dredged sediment was disposed to the land dumping sites whereas ocean disposal accounted for less than 5%. Ocean disposal areas were especially concentrated to the exclusive economic zone (EEZ) in the southeast of Busan, which is not only an important fishing area for fishermen, but also considered to be spawning and nursery ground for some commercial fish species. To minimize negative impacts of dredging and ocean disposal of coastal sediment on marine ecosystem and potential strife among coastal users, we suggest 1) in development projects involving ocean disposal, it should be mandatory to propose careful reuse plans in the land, and 2) guidelines of environmental assessment and consequence management programs should be developed and implemented.

Development of Power Driver for PVDF Film Actuator Applied to Dehydration of Dredged Sediment (준설토 탈수에 적합한 PVDF Film Actuator 구동용 파워 드라이버 개발)

  • Kim, Dae-Sun;Kim, Min-Kyu;Kim, Young-Uk;Kim, Jung-Kuk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.2
    • /
    • pp.26-37
    • /
    • 2012
  • In this study, a power driver for actuating PVDF film that has the characteristic of dramatic impedance change caused by size and operating frequency variation was developed to dehyance rate of dredged sediment. In order to supply maximum energy to the PVDF film, a full-bridge circuit implemented using IGBT with a R-L-PVDF film impedance matching circuit was designed and constructed. the dehydration capabilities of the PVDF film actuated by the developed driver cleary was tested for dredged sediment. It was found that the PVDF film actuated by the developed driver cleary enhanced dehydration, avout three times faster during the first 3 minutes, compared to natural dehydration. The result of the experiment confirmed that the developed power driver for actuating Pvdf film could be used effectively for dehydration of dredged sediment.

A Tiered Approach of Washing and Stabilization to Decontaminate and Recycle Dredged River Sediment (세척과 안정화기술을 적용한 오염 준설토의 처리 및 재활용 시스템 개발)

  • Kim, Young-Jin;Nam, Kyoung-Phile;Lee, Seung-Bae;Kim, Byeong-Kyu;Kwon, Young-Ho;Hwang, In-Seong
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.2
    • /
    • pp.47-54
    • /
    • 2010
  • Although the demands for the dredging work have been increasing due to social and industrial reasons including national plan for restoration of four major rivers, environmental standards or management guidelines for the dredged river sediment are limited. The suggested environmental standard for the beneficial use of dredged river sediment consists of two levels, recyclable and concern, and includes eight contaminants such as metals and organic contaminants. The systematic approach to remediate dredged river sediment is also suggested. The system consists of both washing and stabilization processes with continuous multi particle separation. In the early stage, the sediments are separated into two particle sizes. The coarse-grained sediment over 0.075 mm, generally decontaminated with less trouble, follows normal washing steps and is sent for recycling. The fine-grained sediments under 0.075 mm are separated again at 0.025 mm. The particles bigger than this second separation point are treated in two ways, advanced washing for highly contaminated sediments and stabilization for less. The lab test results show that birnessite and apatite are most effective stabilizing agents among tested for Cd and Pb. The most fine residues, down-sized by continuous particle separation, are finally sent for disposal. The system is tested for metals in this study, but is expected to be effective for organic contaminants included in the environmental standard, such as PAH and PCE. The feasibility test on the field site will be followed.

Adsorption of Nitrate and Phosphate onto the Dredged Sediment from a Coastal Fishery (연안어장 준설퇴적물에 대한 질산염과 인산염의 흡착)

  • Sun, Young-Chul;Kim, Myoung-Jin;Song, Young-Chae
    • Journal of Navigation and Port Research
    • /
    • v.36 no.6
    • /
    • pp.459-463
    • /
    • 2012
  • In the present study, experiments have been performed to investigate the effects of the type of adsorbent, pH, and ionic strength on the adsorption of nutrients (nitrate and phosphate in artificial solution) onto the dredged sediment from a coastal fishery. In addition, this study aims to evaluate the possibility of removing the nutrients from the water using the dredged sediment. In the adsorption experiments of the nutrients, the reactions were completed within 10 minutes using ${NO_3}^-$-N($100{\mu}M$, 10mM) and ${PO_4}^{3-}$-P($100{\mu}M$, 10mM). In the steady state, 61% and 77% of the initial amounts were removed respectively for $100{\mu}M$ ${NO_3}^-$-N and $100{\mu}M$ ${PO_4}^{3-}$-P. The thermal treatment of the dredged sediment at $900^{\circ}C$ was not helpful to increase the removal efficiencies of the nutrients. Additives such as CaO and MgO dropped the removal efficiency of ${NO_3}^-$ to 0%, but increased that of ${PO_4}^{3-}$ up to 98%. Adsorption isotherms of ${NO_3}^-$ and ${PO_4}^{3-}$ could be explained by the Freundlich equation ($R^2$>0.99). The adsorption reaction was little influenced by the pH and ionic strength. Based on the results showing short reaction time and considerably high removal efficiencies of the nutrients, it is proposed to apply the dredged sediment from a coastal fishery to removing nutrients such as nitrate and phosphate in the water.

Screening-Level Ecological Risk Assessment for Beneficial Reuse as Soil of Dredged Sediment Contaminated with Heavy Metals (중금속 오염 준설토의 토양으로서의 유효활용을 위한 선별수준 생태위해도평가)

  • Kim, Moonkyung;Kim, Kibeum;Choi, Yongju;Nam, Kyoungphile
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.5
    • /
    • pp.236-241
    • /
    • 2016
  • This study conducted a screening-level ecological risk assessment for heavy metals in dredged sediment for recycling in terrestrial environment. Toxicological information of six heavy metals (i.e., Cu, Zn, Cd, Pb, Cr, and Ni) was collected from ECOTOX of US Environmental Protection Agency, and screened and qualified for the use in the screening-level ecological risk assessment. According to the number of terrestrial ecological receptors for which toxicological information is available, PNEC (Predicted No Effect Concentration) of each heavy metal was derived using either stochastic approach (for Cu, Zn, and Cd), or deterministic approach (for Pb, Cr, and Ni). Hazard quotients of the six heavy metals were derived for a field-collected dredged sediment using the PNEC derived and the PEC (Predicted Environmental Concentration) determined for the dredged sediment. The HQs of Cu, Zn, Cr, Pb and Ni were higher than unity indicating a possibility of ecological risk of the five heavy metals when the dredged sediment is applied in terrestrial environment. Accordingly, remediation processes or a higher-level ecological risk assessment would be needed for the recycling of the material.

Mathematical Model for Analysis on the Behaviours of Submerged Mound Constructed by the Dredged Materials (수중둔덕의 거동특성 해석을 위한 수학적 모형)

  • Choi, Han-kyu;Lee, Oh-Sung
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.391-402
    • /
    • 1999
  • The numerical model predicting the behaviours of submerged mound constructed by dredged material is developed in this paper. The model is based on the Bailard's sediment transport formula, Stokes' second-order wave theory and the sediment balance equation. Nonlinear partial differential equation which is the same form as convection-dispersion equation which represents change of bed section can be obtained by substituting sediment transport equation for equation of sediment conservation. By this process, the analytical solution by which the characteristic of the behaviours of submerged mound can be estimated is derived by probably combining the convention coefficient and the dispersion coefficient governing the behaviours of submerged mound and the probability density function representing the wave characteristics. The validity of the analytical solution is verified by comparing the analytical solution which is assumed to estimate the movement rate submerged mound by bed-load with the field data of the past and its characteristic is analyzed quantitatively by obtaining the mean of the dispersion coefficient representing the extent of the decrease rate of the submerged mound height.

  • PDF

Stress-strain behaviour of reinforced dredged sediment and expanded polystyrenes mixture under cyclic loading

  • Zhou, Yundong;Li, Mingdong;Wen, Kejun;Tong, Ruiming
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.507-513
    • /
    • 2019
  • Reinforced soil and Expanded Polystyrenes (EPS) mixture (RSEM) is a geomaterial which has many merits, such as light weight, wide strength range, easy for construction, and economic feasibility. It has been widely applied to improve soft ground, solve bridge head jump, fill cavity in pipeline and widen highway. Reutilizing dredged sediment to produce RSEM as earthfill can not only consume a large amount of waste sediment but also significantly reduce the construction cost. Therefore, there is an urgent need understand the basic stress-strain characteristics of reinforced dredged sediment-EPS mixture (RDSEM). A series of cyclic triaxial tests were then carried out on the RDSEM and control clay. The effects of cement content, EPS beads content and confining pressure on the cyclic stress-strain behaviour of RDSEM were analyzed. It is found that the three stages of dynamic stress-strain relationship of ordinary soil, vibration compaction stage, vibration shear stage and vibration failure stage are also applicative for RDSEM. The cyclic stress-strain curves of RDSEM are lower than that of control clay in the vibration compaction stage because of its high moisture content. The slopes of backbone curves of RDSEMs in the vibration shear stage are larger than that of control clay, indicating that the existence of EPS beads provides plastic resistance. With the increase of cement content, the cyclic stress-strain relationship tends to be steeper. Increasing cement content and confining pressure could improve the cyclic strength and cyclic stiffness of RDSEM.

A Study on Sequential Extraction of Heavy Metals from Marine Dredged Sediment at Busan New Port (부산 신항만 준설퇴적물로부터 중금속의 연속추출에 관한 연구)

  • Kim, Myoung-Jin;Jang, Mi-Jeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.93-102
    • /
    • 2011
  • In this study, experiments on total digestion and sequential extraction were conducted in order to understand total metal contents, and mobility, bioavaliability and toxicity of metals in marine dredged sediment from Busan New Port. The total concentrations of arsenic and heavy metals in the dredged sediment were relatively low as follows: Al (2.36~2.96 wt.%), As (1.6~3.3 mg/kg), Ba (30.0~33.8 mg/kg), Cd (0.12~0.18 mg/kg), Cr (27.5~35.0 mg/kg), Cu (11.3~15.0 mg/kg), Fe (2.91~3.51 wt.%), Mn (324~408 mg/kg), Ni (18.8~23.8 mg/kg), Pb (23.8~31.3 mg/kg), and Zn (70.0~86.3 mg/kg). In addition, it was found that most of Al (87.5~95.9%), As (74.1~93.8%), Ba (71.8~77.6%), Cr (69.5~94.3%), Cu (50.0~78.7%), Fe (70.8~87.6%), Ni (64.5~75.3%), Pb (53.4~64.3%), and Zn (62.5~81.7%) existed in the residual fraction, meaning that those elements might come from natural sources. On the other hand, Cd and Mn were present mainly in the non-residual fraction. Due to low concentrations of toxic heavy metals and high percentage of residual fraction, it could be possible to reuse the dredged sediment for bricks, pavement base material, etc.