• Title/Summary/Keyword: Dredged Soil Recycling

Search Result 44, Processing Time 0.02 seconds

Shearing Properties of Waste Tire Powder-Added Lightweight Soil by Direct Shear Test (직접전단시험에 의한 폐타이어 혼합경량토의 전단특성 연구)

  • Kim, Yun-Tae;Kang, Hyo-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.20-29
    • /
    • 2009
  • This study investigated the shear strength characteristics of waste tire powder-added lightweight soil (WTLS), which were developed to recycle dredged soil, bottom ash, and waste tires. The WTLS used in this experiment consisted of dredged soil, bottom ash, waste tire powder, and cement. Test specimens were prepared with various contents of waste tire powder ranging from 0% to 100% at 25% intervals and bottom ash contents of 0% or 100% by the weight of the dry dredged soil. In this study several series of direct shear tests were carried out, which indicated that the shear properties of WTLS were strongly influenced by the mixing conditions, such as the waste tire powder content and bottom ash content. The unit weight, as well as the shear strength of the WTLS, decreased with an increase in waste tire powder content. The shear strength of WTLS with bottom ash was 1.34 times greater than that of WTLS without bottom ash. An average increase in cohesion of 30 kPa was obtained in WTLS with the inclusion of bottom ash due to the bond strength induced from the pozzolanic reaction of the bottom ash. In this test, the maximum value of the internal friction angle was obtained with a 25% content of waste tire powder.

The Permeability Characteristics of Solidified Soil Using Wastes (폐기물을 이용한 고화처리토의 차수효과)

  • Kim Inbae;Koopman Ben.;An Jinsun
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.388-394
    • /
    • 2004
  • Seaweed waste(SWW) was used to improve the liner effect in recycling of dredged soil as the landfill liner. It was found that the compressive strength became somewhat lower when SWW was added than that was when Ordinary Port-land Cement(OPC) only was added. The permeability coefficient, however, became lower in this case which showed the lowest permeability coefficient when the addition of SWW was one percent. Hence, to comply with the regulations for the compression strength and permeability coefficient of landfill liner, the addition of OPC should be over eight percent and that of seaweed waste one percent. The results of leaching test showed that the solidified material was not against the laws of waste control, so it is possible to use as the landfill liner and to expect sufficient economic effects because wastes such as dredged soil and seaweed can be recycled.

Development of Eco-friendly Binder Using Waste Oyster Shells (친환경 굴껍질 고화재(R) 개발)

  • Gil-Lim 한국해양연구원, 연안항만공학본부;Chae Kwang-Suk;Paik Seung-Chul;Yoon Yeo-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.79-85
    • /
    • 2005
  • An experimental study was carried out to investigate the recycling possibility of waste oyster shells, which induce environmental pollutions by piling up out at the open or the temporary reclamation. The purpose of this study is to develope eco-friendly binder using waste oyster shells, and to reinforce dredged soils fur soft soil improvement. In this paper, a series of laboratory tests including compressive strength tests were performed to evaluate strength characteristics of soils treated by developed binder with different water content of dredged soils, mixing rates of binder, curing days. Based on test results, eco-friendly binders manufactured from waste oyster shells were estimated as good resource materials for soft soil improvements.

Development of Eco-friendly Binder Using Oyster-Shell and Their Applications (친환경 굴껍질 고화재$^{(R)}$ 개발 및 적용성 연구)

  • Yoon, Gil-Lim;Chae, Kwang-Seok;Baek, Seung-Cheol;Yoon, Yeo-Won;Lee, Kyu-Hwan;Kim, Jae-Kwon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.553-560
    • /
    • 2005
  • An experimental investigation was carried out to study recycling possibility of waste oyster shells, which induce environmental pollutions from piling up out at the open or the temporary reclamation. The purpose of this paper is to develop eco-friendly binder using waste oyster shells, and to investigate their reinforcing effects for dredged soil improvement. A series of laboratory tests including compressive strength tests were performed to evaluate strength characteristics of soils treated by developed binder with varying water content of dredged soils, mixing rates of binder, and different curing days. Based on laboratory test results, eco-friendly binders developed here using waste oyster shells were found as good resource materials for soft soil improvements.

  • PDF

Comparison of Compressive Behavior Characteristics between Unreinforced and Reinforced Lightweight Soils for Recycling of Dredged Soils (준설토 재활용을 위한 무보강 및 보강 경량토의 압축거동특성 비교)

  • Kim, Yun-Tae;Kwon, Yong-Kyu;Kim, Hong-Joo
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.44-49
    • /
    • 2005
  • This paper investigates strength characteristics and stress-strain behaviors of unreinforced and reinforced lightweight soils. Lightweight soil, composed of dredged soil, cement, and air-foam, was reinforced by a waste fishing net, in order to increase its compressive strength. Test specimens were fabricated by various mixing conditions, such as cement content, initial water content, air content, and waste fishing net; then, unconfined compression tests were carried out on these specimens. From the test results, it was shown that reinforced lightweight soil had different behavior after failure, even though it had similar behavior as unreinforced lightweight soil before failure. The test results also showed that stress became constant after peak strength in reinforced lightweight soil, while the stress decreased continuously in unreinforced lightweight soil. It was observed that the strength was increased due to reinforcing effect by the waste fishing net for most cases, except high water content greater than $218\%$. In the case of high water content, a reinforcing effect is negligible, due to slip between waste fishing net and soil particles. In reinforced lightweight soil, secant modulus (E50) was increased, due to the inclusion of waste fishing net.

Comparison of Mechanical Characteristics of Fiber-Reinforced Lightweight Soils (섬유보강 혼합경량토의 역학적 특성 비교)

  • Kim, Yun-Tae;Han, Woo-Jong
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.51-58
    • /
    • 2008
  • The objective of this study was to investigate the mechanical characteristics of fiber-reinforced lightweight soil using waste fishing net or monofilament for recycling both dredged soils and bottom ash. Reinforced lightweight soil consists of dredged soil, cement, air foam, and bottom ash. Waste fishing net or monoiament was added the mixture in order to increase the shear strength of the lightweight soil. Test specimens were fabricated with various mixing conditions, including waste fishing net content and monofilament content. Several series of unconfined compression tests and direct shear tests were carried out. From the experimental results, it was found that the unconfined compressive strength, as well as the stress-strain behavior of reinforced lightweight soil was strongly influenced by mixing conditions. In this study, the maximum increase in shear strength was obtained with either a 0.5% content of monofilament or 0.25% waste fishing net. The unconfined compressive strength of reinforced lightweight soil with monofilament was greater than that of reinforced lightweight soil with waste fishing net.

Feasibility Study on the Use of Dredged Soil from Sewage Pipes as a Concrete Material (하수차집관로 준설토양의 콘크리트골재 적용성 평가에 관한 연구)

  • Kim, Joon-Ha;Kim, Hyeong Wook;Kim, In-Sik;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.2
    • /
    • pp.10-16
    • /
    • 2017
  • Recently, the gap between demand and supply of natural aggregate has increased owing to the depletion of aggregate sources. Therefore, policy support is necessary for the stable supply of aggregate resources. Public and construction works experience problems when they do not receive a steady supply of aggregate. Further, instabilities in aggregate supply lead to increases in aggregate prices, and consequently construction costs. As a result, the likelihood of poor construction using low-grade aggregate increases. It is therefore crucial to put measures in place that deal with these issues. This study aims to reduce the load imposed by aggregate use on the environment by recycling soil dredged from sewage ducts to reduce the gap between supply and demand of fine aggregate. The dredged soil is assessed using an applicability test for quality characteristics and solidification with basic properties. This study aims to secure the safety of dredging soil and solidified objects through interior physical and chemical analyses and to utilize it as a base material for concrete solidification in the future.

Engineering Properties of Flowable Composite Soil with Waste Tire and Bottom Ash (폐타이어-저회가 혼합된 유동성 복합지반재료의 공학적 특성)

  • Kim, Yun-Tae;Kang, Hyo-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.52-58
    • /
    • 2010
  • This study investigated the engineering properties of waste tire powder-bottom ash added composite soil, which was developed to recycle dredged soil, bottom ash, and waste tire powder. Test specimens were prepared using 5 different percentages of waste tire powder content(0%, 25%, 50%, 75%, and 100% by weight of the dry dredged soil), three different percentages of bottom ash content (0%, 50%, and 100% by weight of the dry dredged soil), and three different particle sizes of waste tire powder (0.1~2 mm, 0.9~5 mm, and 2~10 mm). Several series of unconfined compression tests, direct shear tests, and flow tests were conducted. The experimental results indicated that the waste tire powder content, particle size of waste tire powder, and bottom ash content influenced the strength and stress-strain behavior of the composite soil. The flow value increased with an increase in water content, but decreased with an increase in waste tire powder content.

A Study of Relationship Between Engineering and Germination Characteristics of Stabilized Soils with Various Organic Contents (유기질 함량에 따른 고화토의 역학적 특성과 식생발아 특성과의 관계 분석)

  • Yun, Daeho;Kim, Yuntae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.43-51
    • /
    • 2014
  • Organic matter in dredged soil has a lot of engineering problem in ground including a large settlement, crack propagation, low bearing capacity and low friction angle. From an agricultural point of view, however, organic matter contributes greatly soil quality and plant health. This paper investigated the relationship between engineering and germination characteristics of stabilized mixture consisting of different ratios of organic content (0 %, 10 %, 20 %, 30 %) for recycling dredged soil including organic matter. Several series of laboratory tests such as flow test, unconfined compressive test and consolidation test were performed to find out engineering characteristics. pH, percent of germination and growth of plants were also measured to investigate the germination characteristics. The experimental results indicated that, as organic content increased, unconfined compressive stress decreased and compression and swelling indices increased. However, percent of germination and plant growth increases as organic content increases.

Sensitivity Analysis of Soil Properties for the Slope Safety Factor in Embankments utilized Bottom Ash and Dredged Soil Mixture (바텀 애쉬와 준설 혼합토 적용 제체의 사면 안전율에 대한 토질 정수 민감도 분석)

  • Noh, Soo-Kack;Son, Young-Hwan;Park, Jae-Sung;Bong, Tae-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.99-109
    • /
    • 2015
  • In the construction industry, the interest for recycling aggregates is rising as more people demand for alternatives due to lack of supply of natural aggregates and environmental problems. However, in order for recycled aggregates to be used in infrastructures, stability and other factors need to be verified. Therefore, the objective of this study is to analyze the sensitivity of soil properties to secure slope safety according to various heights of embankment when bottom ash and dredged soil mixture is applied in the embankment. In most cases, all heights were safe for the slide for the embankment whether the water level is full or sudden draw down. The result of the sensitivity analysis revealed that the unit weight of embankments is highest among all factors to be considered. However, the sensitivity of the unit weight became smaller and the sensitivity of the friction angle of embankments increased with the height of embankments. The sensitivity of factors of core materials is very small because the core has weaker physical properties than those of the embankment. The effect of the height for each factor is different for each slope and water levels. The sensitivity of the unit weight of embankments is most affected when the height is 60m in the upstream slope. To conclude, bottom ash and dredged soil mixture can be applied in the embankment and different factors must be considered in different scale because the sensitivity depends highly on the height of embankments.