• Title/Summary/Keyword: Drawing strain

Search Result 220, Processing Time 0.022 seconds

Formability of Sheet Metals (금속판재의 성형성)

  • 이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.11-23
    • /
    • 1994
  • Formability of sheet metals can be evaluated using tensile testing. Easily measured tensile properties such as yield strength, tensile strength, elongation, strain hardening exponent, strain rate sensitivity and plastic strain ratio are important parameters to evaluated the sheet formability. This paper briefly explains how these properties are related to deep drawability and stretchability. The plastic anisotropy of sheet metals is usually attributed to the crystallographic texture. However dislocation distribution may influence the anisotropy.

The Effects of Drawing Strain and Annealing Condition on Mechanical Properties of High Strength Steel Wires (고강도강선의 신선 가공할 및 열처리 조건이 기계적 성질에 미치는 영향)

  • Lee, J.W.;Lee, Y.S.;Park, K.T.;Nam, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.138-141
    • /
    • 2008
  • The effects of annealing temperature and time on mechanical properties and microstructures were investigated in cold drawn pearlitic steel wires. During annealing, the increment of the tensile strength at low temperatures found to be due to age hardening, while the decrease in the tensile strength at high temperatures was attributed to age softening, involving the spheroidization of lamellar cementite and recovery of lamellar ferrite. Since tensile strength and the occurrence of the delamination would be closely related to the dissolution of cementite, the lower annealing temperature and the increase of drawing strain caused the higher tensile strength and the easier occurrence of the delamination in cold drawn pearlitic steel wires.

  • PDF

Improvement on the Formability of Magnesium Alloy Sheet by Heating and Cooling Method (가열냉각방법에 의한 마그네슘합금의 판재성형성 개선)

  • Kang, Dae-Min;Manabe, Ken-ich
    • Transactions of Materials Processing
    • /
    • v.14 no.7 s.79
    • /
    • pp.607-612
    • /
    • 2005
  • In this paper, warm deep drawing process with local heating and cooling technique was attempted to improve the formability of AZ31 magnesium alloy which is impossibly to form by conventional methods at room temperature by finite element method and experiment. For FE analysis, in first model with considering heat transfer, both die and blankholder were heated to 573K while the punch was kept at room temperature by cooling water. Also distribution of thickness and von Mises stress at room temperature and 498k for warm deep drawing were compared by FEM. Uniaxial tension tests at elevated temperature were done in order to obtain the temperature dependence of material constant under temperature of $293K\~573K$ and cross head velocity of $5\~500mm/min$. The phenomenological model for warm deep drawing process in this work was based on the hardening law and power law strain rate dependency. Deep drawing experiment were conducted at temperatures of room temperature, 373K, 423K, 473K, 498K, 523K, and 573K for the blank and deep drawing tools(holder and die) and at a punch speed of 10mm/min.

Development of Wire Temperature Prediction Method in a Continuous Dry Wire Drawing Process Using the High Carbon Steel (고탄소강의 연속 건식 신선 공정에서 선재의 온도 예측 기법 개발)

  • Kim, Yeong-Sik;Kim, Dong-Hwan;Kim, Byeong-Min;Kim, Min-An;Park, Yong-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.330-337
    • /
    • 2001
  • Wire drawing process of the high carbon steel with a high speed is usually conducted at room temperature using a number of passes or reductions through consequently located dies. In multi-stage drawing process, temperature rise in each pass affects the mechanical properties of final product such as bend, twist and tensile strength. Also, this temperature rise during the deformation is the reason that the wire in drawing process is broken by the embrittlement due to rapid strain aging effect. This paper presents the estimation of the wire temperature for the multi-stage wire drawing process. Using the proposed calculation method of wire temperature, temperature rise at deformation zone as well as temperature drop in block considering the heat transfer between the block and wire were calculated. As these calculated wire temperatures were applied to the real industrial fields, it was known that the calculated results were in a good agreement with the measured wire temperature.

Effect of Mo and Cu Contents on Work Hardening of Cold Drawn Stainless Steel 304H Wires for Spring (스프링용 스테인레스강 304H 신선재의 가공경화에 미치는 Mo와 Cu 농도의 영향)

  • Kim S. W.
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.632-638
    • /
    • 2005
  • To investigate the effect of Mo and Cu contents on tensile strength of cold drawn stainless steel 304H wires, metallographical and mechanical tests were performed for the wire specimens drawn to different drawing strains at room temperature. It was confirmed that the contents of Mo ana Cu have little influence on the tensile strength of drawn specimens, even though the strain induced martensite transformation decreased with increasing the contents of Mo and Cu. These results were explained by the strengthening of the formed martensite itself due to the solid solution effect of interstitial solutes, carbon and nitrogen. The contents of these elements were slightly higher in the specimens containing additionally added Mo and Cu.

Analysis of Formability of Magnesium Alloy using Finite Element Method (유한요소법에 의한 마그네슘 합금판의 성형성 해석)

  • Kang, Dae-Min;Park, Kyeong-Dong;Hwang, Jong-Kwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.60-66
    • /
    • 2004
  • Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. In this paper, It was focussed on the drawability factors on the square cup deep drawing by PAM-STAMP with using magnesium alloy to reduce car weight as well as to draw much attention from the viewpoint of environmental preservation high rigidity, In order to predict the effect of drawability factors, the relationships between punch load and punch stroke, the relationships between thickness strain and distance, and are used. According to this study, the results of simulation will give engineers good information to access the drawability of square cup deep drawing at warm temperature.

  • PDF

Development of Drawbead Expert Models for Finite Element Analysis of Sheet Metal Forming Processes (Part1:Experiment) (박판성형공정의 유한요소해석을 위한 드로우비드 전문모델 개발(1부: 실험))

  • Lee, Jae-U;Keum, Yeong-Tak
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.3-11
    • /
    • 1998
  • During the forming process of sheet metals, the drawbead in the die face controls a restraining force so that the sheet flows into the die cavity with tension. In order to investigate a drawgbead restraining force and a pre-strain just after drawbeads which are essential in the finite element analysis of form-ing processes, the friction test and drawing test are employed. The experiments performed with a cir-cular bead stepped bead double circular bead and circular-and-stepped bead in the various forming conditions and bead sizes show that the restraining force varies linearly with the blank holding force. bead radius blank thickness and friction but the pre-strain nonlinearly does with them.

  • PDF

A Study on the Drawing of Strip by Upper Bound Elemental Technique (상계요소법에 의한 판재 인발공정에 관한 연구)

  • Hur, K.D.;Choi, Y.;Choi, I.K.
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.11-17
    • /
    • 2003
  • For metal forming analysis, upper-bound solution is a practical method because the solution is overestimated. However it is not easy to determine the stresses on dies by using upper-bound solution. In this study, new scheme to calculate the stresses on dies based on upper bound solution is proposed. In the velocity fields, imaginary velocity is adapted to analyze the normal pressure on die surfaces. To verify the proposed scheme. plane strain drawing has been considered. The stresses on dies obtained by the proposed scheme are compared with the results of rigid plastic FEM and the experimental results. In the experiments, pressure film is used to measure the normal pressure on dies.

Limit Analysis of Plane Strain Drawing (평면 변형 인발의 극한 해석)

  • 김병민;최인근;최재찬;이종수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1407-1416
    • /
    • 1991
  • 본 연구에서는 Liu의 수식화를 바탕으로 가공 경화성을 고려하여 수식화를 재 구성하고, 유한요소 프로그램을 개발하여 평면 변형 인발문제를 극한 해석함으로써, 성형에 필요한 한계 하중 및 최적 속도장을 직접적으로 구하였다.수렴되어진 최적 속도장으로 각 요송에서의 변형률 속도, 변형률 및 격자 변형등을 수치적으로 계산함 으로써 가공에 따른 변형 특성도 파악하였다. 한계 하중은 항공기 구조용 소재인 알 루미늄 6061 재료를 이용하여 판재 인발 실험을 행함으로써 얻은 결과치와 비교 검토 하였으며, 유동 특성을 관찰하기 위하여 격자 왜곡(grid distortion) 실험을 하여 얻 은 변형 패턴과 수치 계산에서 구한 격자변형 패턴을 상호 비교하였다.

Analysis of the Effect of Strain Hardening on Central Bursting Defects in Strip Drawing (판재 인발 에서 내부결함 에 대한 변형경화 의 영향 에 관한 해석)

  • 최재찬;김병민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.677-682
    • /
    • 1985
  • 극치해석적인 상계정리를 기초로 하여, 평면변형 인발에서 발생하는 내부결함(central bursting)을 예측하기 위해 중심에서 공동(voids)을 가진 금속에 대해 비례흐름(proportional flow)과 내부결 함의 흐름을 비교하여 해석하였다. 이 결함을 촉진시키는 공정조건에 대한 판정식(criterion)을 변형경화 금속에 대해 유도하였다. 공동을 가진 금속은 공동들을 축소시키기 위해 정상적인 재 료(sound material)의 흐름과 동일 방법으로 흐를 수 있으며, 경우에 따라서는 내부결함을 확장 하기 위해 흐를 수도 있다. 본 연구에서는 다이의 경사각, 단면감소율 및 마찰 등의 어떤 공정 변수 영역에서 중심축 상에 많은 공동을 가진 변형경화 금속에서도 내부결함이 발생할 수 있다는 것이다.