• Title/Summary/Keyword: Drawing ratio

Search Result 333, Processing Time 0.026 seconds

The Application of Finite Element Method to Process Design Considering Forming Limit in Deep Drawing (성형한계를 고려한 디프 드로잉 공정설계에 대한 유한 요소 해석)

  • Choe, Yeong;Lee, Gyu-Ho;Go, Dae-Cheol;Kim, Byeong-Min;Choe, Jae-Chan
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.562-569
    • /
    • 1998
  • The limit drawing ratio (LDR) is a major process parameter in the process design of deep drawing. If the actual drawing ratio is greater than the LDR for a particular stage then an intermediate stage has to b added the process sequence to avoid failure during the drawing operation and the optimal process design considering for the first-drawing and redrawing by using finite element method combined with ductile fracture criterion. From the results of finrte element analysis the optimal value of drawing ratio is obtained which contributes to the more uniform distribution of thickess and the smaller values of the ductile fracture infinal cup.

  • PDF

A Study on the Warm Deep Drawing Ability of Sheets on Cr-Coating Die (크롬코팅 처리된 금형에서 박판의 온간 딥드로잉 성형성에 관한 연구)

  • 서대교;이재동;최치수;최이천;김헌영
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.186-192
    • /
    • 2000
  • Some deep drawing characteristics to the elevated temperatures were investigated for the SCPI steel sheets by using the Cr-coated die. For this investigations, six steps of temperature ranges, from room temperature to 25$0^{\circ}C$, and six kinds of drawing ratio, from 2.4 to 2.9 were adopted. As a result, the limiting drawing ratio, maximum drawing force, and the maximum drawing depth were sensitively affected by the elevated temperatures, and the more stable thickness strain distribution was observed to the elevated temperatures. Some experimental results were compared with analytical results using the DYNA-3D code.

  • PDF

Deep Drawing With Internal Air-Pressing to Increase The Limit Drawing Ratio of Aluminum Sheet

  • Moon, Young-Hoon;Kang, Yong-Kee;Park, Jin-Wook;Gong, Sung-Rak
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.459-464
    • /
    • 2001
  • The effects of internal air-pressing on deep drawability are investigated in this study to increase the deep drawability of aluminum sheet. The conventional deep drawing process is limited to a certain limit drawing ratio(LDR) beyond which failure will occur. The intention of this work is to examine the possibilities of relaxing the above limitation through the deep drawing with internal air-pressing, aiming towards a process with an increased drawing ratio. The idea which may lead to this goal is the use of special punch that can exert high pressure on the internal surface of deforming sheet during the deep drawing process. Over the ranges of conditions investigated for Al-1050, the local strain concentration at punch nose radius area was decreased by internal air-pressing of punch, and the deep drawing with internal air-pressing was proved to be very effective process for obtaining higher LDR.

  • PDF

Investigation of Deep Drawability and Product Qualities of Ultra Thin Beryllium Copper Sheet Metal (베릴륨동 극박판의 드로잉 성형성과 품질특성 연구)

  • Park, S.S.;Hwang, K.B.;Kim, J.B.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.179-184
    • /
    • 2010
  • The present study is focused on the deep drawability and product qualities of ultra thin beryllium copper sheet metal. The goal of this research is to investigate the limit drawing ratio in deep drawing of ultra thin beryllium copper metal. For the experiment, beryllium copper(C1720, $50{\mu}m$ in thickness) is used. Tensile test are also carried out to find out the material properties. Deep drawing experiments are carried out in Universal Testing Machine(UTM) to obtain limit drawing ratio. Deep drawing tests are carried out for various specimen sizes. Teflon film is used as a lubricant and constant blank holding force is imposed. Sheet thickness and surface hardness are measured along radial direction after deep drawing. Thickness is measured using optical microscope. For beryllium copper(C1720), the maximum LDR of 2.4 is obtained when the die shoulder radius is 20 or 30 times of sheet thickness.

The Applicatiion of Finite Element Method to Process Design Considering Forming Limit in Deep Drawing (성형한계를 고려한 디프 드로잉 공정설계에 대한 유한 요소 해석)

  •  
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.74-82
    • /
    • 1998
  • The limit drawing ratio (LDR) is a major process parameter in the process design of deep drawing. If the actual drawing ratio is greater than the LDR for a particular stage, then an intermediate stage has to be added to the process sequence to avoid failure during the ratio. In this study, the optimal process design considering forming limit is performed for the first-drawing and redrawing by using finite element method combined with ductile fracture criterion. The LDR and the site of fracture initiation are predicted by means of the fracture criterion. From the results of finite element analysis, the optimal value of drawing ratio is obtained, which contributes to the more uniform distribution of thickness and the smaller values of the ductile fracture in final cup.

Optimization of Process Variables of Shape Drawing for Steering Spline Shaft (조향장치용 스플라인 샤프트 이형인발 공정변수 최적화)

  • Lee, S.K.;Kim, S.M.;Lee, S.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.2
    • /
    • pp.132-137
    • /
    • 2010
  • In the multi-pass shape drawing process, the appropriate process design is very important to produce sound products. The reduction ratio, die angle, and the intermediate die shape are very important process variable of the multi-pass shape drawing. The aim of this study is the determination of the reduction ratio, die angle, and the intermediate die shape of the 2 pass shape drawing process for producing steering spline shaft. In this study, FE analysis, Taguchi method, and ANN(artificial neural network) were applied to determine the appropriate reduction ratio, die angle, and intermediate die shape. After the determination of the process variables, FE analysis and drawing experiment were performed to evaluate the effectiveness of the determined process variables. The dimensional accuracy of the final drawn spline shaft was evaluated by using 3D surface profiler and 3D laser digitizing system.

Thickness Distribution of Hemispherical Cup in Meso-Scale Deep Drawing Process (반구형 극소 드로인 제품의 두께분포 비교)

  • Lee, K.S.;Jung, H.K.;Kim, J.B.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.36-41
    • /
    • 2011
  • Meso-scale or micro-scale forming of sheet metal parts has been recently considered as one of the important forming technologies with growing demand on meso/micro products for electric or medical devices. Experimental investigation on the cylindrical meso-cup drawing with hemispherical punch is carried out to examine the limit drawing ratio and thickness distribution of drawn cups. The working parameters chosen in this study are blank diameter, die-corner radius and blankholding force. It is found from the experiments that the limit drawing ratio of 2.4 can be achieved in the case of hemispherical cup drawing and uniform thickness distribution in wider region can be obtained compared with the results of conventional cup drawing.

A Study on the process planning of Deep drawing using personal computer (퍼스널 컴퓨터에 의한 디이프드로잉 공정설계의 전산화에 관한 연구 (I))

  • Choi, Jae-Chan;Jin, In-Tai
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.3
    • /
    • pp.31-42
    • /
    • 1988
  • This paper describes a computer aided process planning system called "Deep-Drawing", "Deep-Drawing" is designed for the drawing sequence of cylindrical and rectangular cups with or without taper and flange. The computer program has written in BASIC language with personal computer. Design Rules for process planning are formulated from process limitation, plasticity theory and experimental results including the know-how of many manufacturing factories. "Deep-Drawing" Capabilities include the analysis of drawing sequence by the determination of optimal drawing ratio, the determination of intermediate shape, dimensions, punch and die radius etc., the calculation of drawing loads and blank holder force to perform each drawing step, and the graphic outputs for the operation sheet.tputs for the operation sheet.

  • PDF

A Study on the Warm Deep Drawing Ability of Sheets on Cr-Coating Die (크롬 코팅 처리된 금형에서 박판의 온간 딥드로잉 성형성에 관한 연구)

  • 공경환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.63-70
    • /
    • 1999
  • Some deep drawing characteristics to the elevated temperatures were investigated for the SCP1 steel sheets by using the Cr-coated die. For this investigations six steps of temperature ranges from room temperature to 25$0^{\circ}C$ and six kinds of drawing ratio from 2.4 to 2.9 were adopted. As a result the limiting drawing ration maximum drawing force and the maximum drawing depth were sensitively affected by the elevated temperatures and the more stable thickness strain distribution was observed to the elevated temperatures, Some experimental results were compared with analytical results using the DYNA-3D code.

  • PDF

A STUDY ON THE ESTINMATION OF BLANK HOLDER FORCE IN SQUARE CUP DRAWING (정사각용기의 성형시 블랭크 홀더력에 관한 연구)

  • 김진무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.34-39
    • /
    • 1999
  • IN this study when drawing a square cup blank holder pressure necessary for flange wrinkling prevention was experimentally studied. The materials used in the experiment were SPCC and SUS304 and drawing ratio was 1.62∼2.0 Two case for lubrication condition were experimented. One was without lubricant and the other was with lubrication of high viscosity.

  • PDF