• Title/Summary/Keyword: Drawing experiment

Search Result 238, Processing Time 0.022 seconds

Process Design for Multi Roll-Die Drawing of GDI Fuel Rail (GDI Fuel Rail 제조를 위한 멀티 롤 다이 인발 공정 설계)

  • Kim, S.H.;Kim, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.390-395
    • /
    • 2016
  • GDI fuel rail is component of GDI system which directly fuel with high pressure in the engine combustion chamber. And it is required to high strength and dimensional accuracy. Multi roll-die drawing process consists of the idle roll-die and drawing die in tandem. In the course of drawing with roll-die, deformation takes place between the idle roller pair or pairs. The friction force decreases with the idle roll-die, enabling the reductions to be risen in one step. In this study, the caliber of 4-roll was designed into pass schedule that made the draw force at the exit of the drawing die be equal. In order to compensate for over-filling area, the roll caliber was modified using the result of FE-analysis. The results of FE-analysis and experiment show that the proposed design method can be used to effectively design the multi roll-die process, leading to an accurate shape and correct dimensions of the final within an allowable tolerance of ${\pm}0.08mm$. Furthermore, the productivity was evaluated by comparing with multi roll-die drawing process and conventional multi shape drawing process. The result was confirmed that it has an efficiency of about 2 times than conventional process in terms of time.

A Experimental Study and FE Analysis of the Forming Process with Milli-Component Forming (미세 성형 부품의 성형 공정 해석 및 실험)

  • Ku T. W.;Kang B. S.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.235-238
    • /
    • 2001
  • Milli-structure components are classified as a component group whose size is between macro and micro scales, that is, about less than 20mm and larger than 1mm. The forming of these components has a typical phenomenon of bulk deformation with thin sheets because of the forming size. In this study, milli-structure rectangular cup drawing is analyzed and measured using the finite element method and experiment. Generally, milli-structure containers or cases like cellular phone vibrator consist of rectangular-shaped drawing to save installation space. A systematic approach is established for the design and the experiment of the forming processes for rectangular milli-structure cases. To verify the simulation results, the experimental investigations were also carried out on a real industrial product. The numerical analysis by FEM shows good agreement with the experimental results in view of the deformation shape of the product.

  • PDF

A Study on the Superession of Puckering and Wrinking in Drawing of KFP Engine Part (KFP 엔진 드로잉 부품 주름 발생억제에 관한 연구)

  • Chung, W.J.;Kim, K.T.;Oh, S.G.;Ahn, H.;Lee, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.186-195
    • /
    • 1995
  • In this study, drawing process of KFP engine airsealing bearing support part is analyzed by dynamic explicit finite element method. Puckering should be supressed to meet the specification. By investigating the influence fo process parameter, the feasible process condition can be obtained. The corresponding experiment is carried out. There is good agreement between the experiment and FE simulation . From this result, it is shown that the dynamic explicit finite element method can be used effectively to avoid puckering and wrinking problem in drawing process.

  • PDF

An Experimental Approach of Milli-Structure Sheet Metal Forming (미세 박판 성형 특성에 대한 실험적 연구)

  • Ku, T.W.;Kang, B.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.471-476
    • /
    • 2001
  • Milli-structure components ate classified as a component group whose size is between macro and micro scales, that is, about less than 20mm and larger than 1mm. The forming of these components has a typical phenomenon of bulk deformation with thin sheets because of the forming size. In this study, milli-structure rectangular cup drawing is analyzed and measured using the finite element method and experiment. Generally, milli-structure containers or cases like cellular phone vibrator consist of rectangular-shaped drawing to save installation space. A systematic approach is established for the design and the experiment of the forming processes for rectangular milli-structure cases. To verify the simulation results, the experimental investigations were also carried out on a real industrial product. The numerical analysis by FEM shows good agreement with the experimental results in view of the deformation shape of the product.

  • PDF

A Study on the Acoustic Transmission Characteristics of Polygon Accumulator (다각형 Accumulator의 음향 특성 연구)

  • Seo, Won-Sik;Kong, Byung-O;Kim, Young-Ho;Nam, Kyeong-Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.653-661
    • /
    • 2009
  • In order to reduce the noise and oscillation, it is consider a matter in all aspects about the noise stem from accumulator and the characteristic of transmission, Transformation of outside shape has change of noise occurrence at transmission process. Therefore, performed sound numerical analysis and conducted an experiment to examine the birthplace of accumulator's external shape change. In a sound numerical analysis, we can fond out transmission loss between inlet and outlet's sound pressure. In an experiment, we can make out transmission loss by sound wave separation theory through drawing sound pressure inlet and outlet.

A Study on the Blankholding Force in Deep Drawing Process (디프 드로잉 가공시 블랭크 홀더력에 관한 연구)

  • 이종국;강명순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.886-900
    • /
    • 1989
  • The purpose of this paper is to obtain the effect of blankholding force in deep drawing process. Flange deformation is analysed by theoretical approach in order to apply the optimum blankholding force to the blank. As the result, the upper and lower blankholding force is determined in terms of variables in deep drawing process. Experiment are carried out with the high stiffness spring-type blankholder system. Theoretical upper blankholding force are relatively good agreement with experimental result and the range of initial blankholding forces for various materials tested are found by experiment.

A Study on the Binding Force of Drawbead in the Sheet Metal Forming Process through the finite element and experimental analysis (해석과 실험을 통한 박판성형공정에서의 드로오비드의 구속력에 관한 연구)

  • Bahn, Gab-su;Mo, Chang-ki;Suh, Eui-kwon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.1
    • /
    • pp.5-14
    • /
    • 2007
  • It is necessary for development of drawing product with press to have suitable material selection & all process design and the problem during press process has been cleared from judgement of experience & trial and error. Recently we can estimate press process result from computer aided design & FEM. But we can get more reliable result when we can put more precise process variants during FEM. In case of using a drawbead that is used for the material inflow, it is considered for us to put material property, other analysis condition & friction figure when material is passing through the drawbead for better FEM. From our study, we have drawn an analogy bead connection depth, friction figure & drawing and restraining load according to kinds of lubrication from experiment & FEM for the drawbead. We applied above result to the drawing experiment & FEM and confirmed the validity. We could notice the relation between friction figure & drawing load and the friction figure variation according to kinds of lubrication. It is expected to draw more precise analogy that can be used for real process due to more precise process variants application to FEM.

  • PDF

Elastic-Plastic Finite Element Analysis of Sheet Metal Forming Processes(II) - Analysis of Metal Forming Processes with Contact Condition - (탄소성 유한요소법에 의한 박판성형 공정의 해석 II - 접촉 조건을 가지는 박판성형 공정의 해석 -)

  • 심현보;정완진;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1129-1137
    • /
    • 1990
  • Based on the formulation which incorporates large deformation and anisotropy, an elastic-plastic finite element code is developed with membrane element to include the contact treatment. For the analysis of the general sheet metal forming process with contact condition, the treatment of contact is considered by employing the successive skew coordinate system. Three kinds of sheet metal forming processes with contact conditions are analyzed; stretching of a square diaphragm with a hemispherical punch, deep drawing of a circular cup and deep drawing of a square cup. Then the computational results are compared with the experiment. The computed loads and the distribution of the thickness strain are in good agreement with the experiment for all cases. However, the computational results of the thickness strain show the effect of bending can not be ignored in the deep drawing process whereas the effect of bending is negligible in stretching.

Analysis of Sheet Metal Forming for Non-Axisymmetric Deep Drawing Products (비축대칭 디프 드로잉 제품의 박판 성형 해석)

  • 박동환;배원락;강성수
    • Transactions of Materials Processing
    • /
    • v.10 no.3
    • /
    • pp.185-192
    • /
    • 2001
  • In order to obtain the optimal products in deep drawing process, elliptical deep drawing tests were carried out with several shape radii of the punch and die. As parameters on testing, shape radii of the punch and die were selected. In addition, the conventional shape radii have been determined by trial-and-error using industrial experience and post processing test, and only approximate shape radii of the punch and die have been presented. The optimal shape radii of the punch and die in elliptical deep drawing process with biaxisymmetric blank shape are proposed. In this study, we suggest the appropriate conditions to be applicable to the actual manufacturing processes through the experiment and finite element method.

  • PDF

Process Design of Monobloc Tube for Steering Input Shaft in Cold Drawing (일체형 스티어링 휠 튜브의 인발에 관한 연구)

  • Lee S. K.;Moon H. S.;Kim B. M.;Lee J. H.;Lee Y. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.779-784
    • /
    • 2005
  • MTS(Monobloc Tube Shaft) has been used for the reduction in weight of shaft and increase in supply of power in the auto industry nowadays. Cold drawing process having high productivity and reduction in the cost has been regarded as the effective technology that is able to substitute for swaging process as forming MTS with constant outer diameter or hollow shaft without surface defects. The objective of this study is not only to (md out the optimal process conditions understanding the effect of process parameters on carrying out cold drawing process of SIS(Steering Input Shaft) but also to control the defects resulted from inappropriate process conditions. Therefore, the proper drawing conditions are presented using FE-Analysis and experiment in the paper.