• 제목/요약/키워드: Drawing analysis

검색결과 1,539건 처리시간 0.026초

일체형 스티어링 휠 튜브의 인발공정 설계 (Process design of Monobloc Tube for Steering Input Shaft in cold drawing)

  • 문형준;이상곤;이정환;이영선;이준우;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.431-434
    • /
    • 2005
  • MTS(Monobloc Tube Shaft) has been used for the reduction in weight of shaft and increase in supply of power in the auto industry nowadays. Cold drawing process having high productivity and reduction in the cost has been regarded as the effective technology that is able to substitute for swaging process as forming MTS with constant outer diameter or hollow shaft without surface defects. The objective of this study is not only to find out the optimal process conditions understanding the effect of process parameters on carrying out cold drawing process of SIS(Steering Input Shaft) but also to control the defects resulted from inappropriate process conditions. Therefore, the proper drawing conditions are presented using FE-Analysis and experiment in the paper.

  • PDF

블랭크 홀딩력 조절을 통한 성형성 향상에 관한 수치적 연구 (A Numerical Study on formability improvement by adjusting blank holding force)

  • 최현석;정완진
    • Design & Manufacturing
    • /
    • 제10권1호
    • /
    • pp.31-35
    • /
    • 2016
  • In sheet metal forming process, drawing is typical process. And the key factor of drawing is blank holding force (BHF) A low BHF can cause wrinkling, whereas a high BHF can cause fracture during a deep drawing process. Thus, formability can be influenced by application appropriate BHF. In this study, a variable blank holding force (VBHF) is applied to extend the forming limit by avoiding both wrinkling and fracture. To determine VBHF in drawing process, numerical simulations and statistical analysis are carried out using commercial FEM software.

실시설계단계 BIM 기반 도면 작업 효율 향상을 위한 도면화 템플릿 개발 (Developing a Drawing Template for BIM software to Improve BIM-based Drawing Work Efficiency in the Construction Document Phase)

  • 김이제;김인채;진상윤
    • 한국BIM학회 논문집
    • /
    • 제10권4호
    • /
    • pp.98-109
    • /
    • 2020
  • Based on the prior research which developed the consistency review checklist of the BIM model and 2D drawing through the drawing analysis of the construction documents phase, the apparent limits of the existing template and the template development items were derived. As well, the BIM-based drawing templates of the construction documentation phase were developed and verified using ArchiCAD BIM software. The developed template was then applied to the actual project model in the construction documents phase, and, as a result, 50% of existing work elements could be utilized as templates. This is an increase of more than 30% over the existing template utilization elements, and it is analyzed to be effective in practical application and utilization. Based on the results of this study, if the BIM model construction criteria matching the drawing's utilization purpose are presented, while at the same time the BIM data interlocking and drawing template development studies are conducted, the utilization of BIM data can be maximized and additional drawing work can be minimized to increase the percentage of template utilization elements. In addition, it is believed that this can employed to address functional and institutional problems of BIM-based drawing and make a contribution to the activation of BIM.

스플라인 이형인발을 위한 중간 다이 단면형상 설계 (Design of the Cross Sectional Shape of Intermediate Die for Shaped Drawing of Spline)

  • 이재은;이태규;이상곤;김병민
    • 소성∙가공
    • /
    • 제17권8호
    • /
    • pp.627-632
    • /
    • 2008
  • The cross sectional shape of intermediate die is one of important parameters to improve dimensional accuracy of final product in shaped drawing process. Until now, it has been designed by the experience or trial and error of the expert. In this study, the cross sectional shape of intermediate die for spline shape is determined by the electric fields analysis and scale factor method. The result of the electric fields analysis and scale factor method have been compared with that of the expert method. The effects of cross sectional shape on the dimensional accuracy were investigated by using FE-simulation. And then the multi-stage shaped drawing experiments were performed to verify the results of FE-simulation. As a result, the cross sectional shape from the electric fields analysis and scale factor method had the good dimensional accuracy. These two methods can be used for the method to obtain the cross sectional shape of intermediate die in shaped drawing process.

직사각재 인발 공정의 중간 금형 설계 프로그램 개발 (Development of Program for the Intermediate ie Design in the Drawing of the Rectangular Rod)

  • 김동진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.95-98
    • /
    • 1999
  • In this study, a method to find the optimal intermediate die geometry for the multi-stage drawing process for the rectangular rod from a round bar is proposed and a program using the proposed method is developed. On the stage of the design of the intermediate die geometry, the virtual die was constructed using the initial billet as a inlet of the drawing die and the final product as a exit of that and the virtual die was divided by the number of pass. Divided die was transformed into the rectangular one which is the intermediate die geometry for the multi-stage rectangular drawing process. In order to verify the application of the proposed method on the real industrial product, the drawing of the rectangular rod from a round which composed two stage has been performed and simulated by the three dimensional rigid plastic finite element method.

  • PDF

알루미늄 합금박판 비등온 성형공정의 유한요소해석 및 실험적 연구 (제1부. 실험) (Finite Element Analysis and Experimental Investigation of Non-isothermal Foming Processes for Aluminum-Alloy Sheet Metals(Part 1. Experiment))

  • 류호연;김영은;김종호;구본영;금영탁
    • 소성∙가공
    • /
    • 제8권2호
    • /
    • pp.152-159
    • /
    • 1999
  • This study is to investigate the effects of warm deep drawing with aluminum sheets of A1050-H16 and A5020-H32 for improving deep drawability. Experiments for producing circular cups and square cups were carried out for various working conditions, such as forming temperature and blank shapes. The limit drawing ratio(LDR) of 2.63 in warm deep drawing of circular cups in case of A5020-H32 sheet, whereas LDR of 2.25 in case of A1050-H16, could be obtained and the former was 1.4 times higher than the value at room temperature. The maximum relative drawing depth for square cups of A5020-H32 material was also about 1.92 times deeper than the depth drawn at room temperature. The effects of blank shape and forming temperature on drawability as well as thickness distribution of drawn cups were examined and discussed.

  • PDF

인발공정의 내부결함 방지에 관한 연구 (A Study on Prevention of Central Burst Defects in Wire Drawing)

  • 고대철;김병민;강범수
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.3098-3107
    • /
    • 1994
  • The central burst defects, so-called chevroning, in wire drawing are analyzed by the rigid-plastic finite element method. The occurrence of central burst defects in wire drawing is estimated by the distribution of the hydrostatic pressure around the central part of the workpiece. It has been possible to obtain numerical boundaries which, in reduction in area vs. semicone angle plane, divide the safe and the danger zones, depending on friction factors and material properties. Based on the results of the analysis, it is suggested that the previous criterion derived from the upper bound analysis should be modified for better prediction of the defects. The back tension and the billet with a spherical hole on the central axis are also included in the analysis of the defects.

파이프 인발 각도에 따른 기계적 효과 및 재료에 따른 감소율에 관한 연구 (Mechanical Effects of Pipe Drawing Angle and Reduction Rate on Material)

  • 서영진
    • 한국기계가공학회지
    • /
    • 제19권12호
    • /
    • pp.8-13
    • /
    • 2020
  • Seamless pipes are fabricated by drilling a hole in a cylindrical material and drawing the material to the desired diameter. These pipes are used in environments where high reliability is required. In this study, the pipe drawing process was simulated using DEFORM, a commercial finite element method (FEM) analysis program. The outer diameter of the steel cylinder used herein before drawing was 70 mm, and the target outer diameter was 58 mm. The drawing process consisted of two stages. In this study, the effect of cross-sectional reduction rate on the pipe was investigated by varying the cross-sectional reduction rate in each step to achieve the target outer diameter. The results of this study showed that the first section reduction rate of 26% and the second section reduction rate of 13.9% caused the lowest damage to the material. Moreover, the FEM simulation results confirmed the influence of the drawing die angle on the pipe drawing process. The drawing die angles of 15° in the first step and 9° in the second step caused the least damage to the material.

Matrix법을 이용한 판재 인발에 관한 연구 (A study on the sheet drawing using the Matrix method)

  • 유홍균;전병희
    • 오토저널
    • /
    • 제13권6호
    • /
    • pp.90-100
    • /
    • 1991
  • This paper represents the analysis of the sheet drawing by applying the Matrix method to Hill's slip-line field for small reduction and indirect type slip-line field in case of large reduction. Results of the analysis represent the relation between the reduction ratio and the die wall pressure, mean drawing stress through rough die. The limitation on the use of this slip-line field is described. When the reduction ratio is given, the optimum die angle is analyzed in this paper.

  • PDF

유한요소법을 이용한 축대칭 다단계 딥드로잉 금형 설계 해석 (Axisymmetric Multi-Stage Deep Drawing Dies Design Analysis Using Finite Element Method)

  • 이동호;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 제2회 박판성형심포지엄 논문집 박판성형기술의 현재와 미래
    • /
    • pp.65-73
    • /
    • 1998
  • The design analysis of axisymmetric, multi-stage deep drawing dies was performed using the rigid-viscoplastic finite element formulation. In the formulation, the axisymmetric CFS algorithm was employed. Hill's non-quadratic normal anisotropic yield criterion and isotropic hardening rule were considered. For trial initial displacements and tool contact points, the geometric force equilibrium method was adopted. In order to see the validity of the formulation, the multi-stage deep drawing processes of shell-cylinder front part of hydraulic booster were simulated. The simulation showed good agreements with measurements and PAM-STAMP.