• Title/Summary/Keyword: Drawing Tryout

Search Result 20, Processing Time 0.024 seconds

A Study on the Progressive Die Development of Sheet Metal Forming Part (박판 포밍제품의 프로그레시브 금형개발에 관한 연구)

  • Sim, Sung-Bo;Lee, Sung-Taeg
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.43-49
    • /
    • 2004
  • The production parts have required multiple processes such as drawing, piercing, blanking and notching etc. are performed with a high production rates in progressive die. In order to prevent the defects of process result, the optimization of strip process layout design, die design, die making, and tryout etc. are needed. According to these factors of die development process, it has been required that the theory and practice of metal working process and its phenomena, die structure, machining conditions for die making, die materials, heat treatment of die components, processing know-how and so on. In this study, we designed and analyzed die components through the carrying out of upper relevant matters also simulated the strip process layout of multiple stage drawing by DEFORM. Especially the result of tryout and its analysis became to the feature of this study with a system of PDDC(Progressive Die design by computer).

  • PDF

A Study on the Development of Two side carrier Type Progressive Die toy Multi-Stage Drawing Process

  • Sim, Sung-Bo;Jang, Chan-Ho;Lee, Sung-Taeg
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.341-346
    • /
    • 2002
  • The production part requiring multiple processes such as piecing, blanking and notching are performed with a high production rates in progressive die. In order to prevent the defects of process result, the optimum of strip process layout design, die design, die making, and tryout with inspection etc. are needed. According to these factors of die development process, they required theory and practice of metal working process and its background, die structure, machining conditions for die making, die materials, heat treatment of die components, know-how and so on. In this study, we designed and analyzed die components also simulated the strip process layout of multiple stage drawing by DEFORM. Especially the result of tryout and its analysis become to the feature of this study.

  • PDF

A Study on the Development of Progressive Die for Multi-Stage Forming

  • Sim, Sung-Bo;Jang, Chan-Ho;Sung, Yul-Min;Lee, Sung-Taeg
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.86-91
    • /
    • 2002
  • The production part requiring multiple processes such as piecing, blanking and notching, are performed with a high production rates in progressive die. In order to prevent the dejects of process result, the optimum of strip process layout design, die design, die making, and tryout with inspection etc. are needed. According to these factors of die development process, they required theory and practice of metal working process and its phenomena, die structure, machining conditions for die making, die materials, heat treatment of die camponents, know-how and so on. In this study, we designed and analyzed die camponents also simulated the strip process layout of multiple stage drawing by DEFORM. Especially the result of tryout and its analysis become to the feature of this study.

  • PDF

Development of Multi Forming Product Progressive Die for STS 304 Marine Part Sheet Metal (Part 2)

  • Sim, Sung-Bo;Sung, Yul-Min;Song, Young-Seok
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.151-156
    • /
    • 2000
  • Ultra precision progressive die have used for above one million's lot size of production part. In the field of design and making tool for press working, the progressive die for sheet metal (STS 304, thickness : 0.5mm) is a specific division. In order to prevent the defects, the optimum design of the production part, strip layout, die design, die making and tryout etc. are necessary. They require analysis of many kinds of important factors, i.e. theory and practice of metal press working and its phenomena, die structure, machining condition for die making, die materials, heat treatment of die component, know-how and so on. In this study, we designed and constructed a progressive die of multi-stage and performed try out. Out of these processes the die development could be taken for advance. Especially the result of tryout and its analysis become the characteristics of this paper (part 1 and part 2) that nothing might be ever seen before such as this type of research method on all the processes. In the part 2 of this study we treated die making and tryout mostly.

  • PDF

development of the High Utility Progressive Die for Sheet Metal Forming (Part 2)

  • Sim, Sung-Bo;Song, Young-Seok;Sung, Yul-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.231-235
    • /
    • 2000
  • Precision progressive die have used for above ten thousand pieces of lot size production part. In the field of design and making tool for press working, the progressive die for sheet metal (SPC, thickness : 2mm) is a specific division. In order to prevent the defects, the optimum design of the U-bending production part, strip layout, die design, die making and tryout etc. are necessary. They require analysis of many kinds of important factors, i.e. theory and practice of metal pres working and its phenomena, die structure, machining condition for die making, die materials, heat treatment of die component, know-how and so on. In this study, we designed and constructed a progressive die of multi-stage and performed try out. Out of these processes the die development could be taken for advance. Especially the result of tryout and its analysis become the characteristics of this paper (part 1 and part 2) that nothing might be ever seen before such as this type of research method on all the processes. In the part 2 of this study we treated die making and tryout mostly.

  • PDF

Development of the Circular lancing Type Progressive Die for STS 304 Sheet Metal Working (Part 2)

  • Sim, Sung-Bo;Song, Young-Seok;Sung, Yul-Min
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.218-223
    • /
    • 2000
  • Ultra precision progressive die have used for above one million's lot size of production part. In the field of design and making tool for press working, the progressive die for sheet metal (STS 304, thickness : 0.5mm) is a specific division. In order to prevent the defects, the optimum design of the production part, strip layout, die design, die making and tryout etc. are necessary. They require analysis of many kinds of important factors, i.e. theory and practice of metal press working and its phenomena, die structure, machining condition for die making, die materials, heat treatment of die component, know-how and so on. In this study, we designed and constructed a progressive die of multi-stage and performed try out. Out of these processes the die development could be taken for advance. Especially the result of tryout and its analysis become the characteristics of this paper (part 1 and part 2) that nothing might be ever seen before such as this type of research method on all the processes. In the part 2 of this study we treated die making and tryout mostly.

  • PDF

Effect of Forming Factor on Springback in U-bended and Drawn Channel (굽힘과 드로잉에서 성형인자가 탄성복원에 미치는 영향)

  • 한영호;송윤준;김형진;정영혁
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.90-93
    • /
    • 2002
  • Assuring required dimensional tolerance after spingback becomes the main concern of sheet-forming die designers when formability is secured through previous tryout. As a part to build a guideline to control springback in automobile frame forming, experiments are carried out to show the effects of process parameters, such as holding force, blank size, and lubrication, on corner angles of channels formed by U-bending or by square-cup drawing and trimming. The results are resented in the viewpoint of evaluating parameters.

  • PDF

A Study on the Multi-row Progressive Die for Thin Sheet Metal Forming by Computer Simulation

  • Sim, Sung-Bo;Kim, Chung-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.75-80
    • /
    • 2008
  • The progressive die performs a work of sheet metal processes with a piercing, notching, embossing, bending, drawing, cut-off etc. in many kinds of pressing. Now a days, these processes have been evaluated as a advanced tooling method to increase the productivity and high quality assurance. The first step analyzing of die design is production part review, then the arrangement drawing of product design and strip process layout design should be done as a next steps with a FEM simulation for its problem solution. After upper procedure were peformed, it was started to make the die, then tryout and its revision of the die and product quality, safety, productivity etc. were done continually. For the all of these process, we mobilized the theory and practice of sheet metal forming, die structure, the function and activity of die components, and the others of die machining, die material, heat treatment and know‐how so on. In this study the features of representative are production part analyzing through the FEM simulation of bending area with a considering spring back problem by DEFORM.

  • PDF

A Study on Development of Combined Drawing Process for Automotive Cowl Cross Bar with Variable Diameters (가변직경을 갖는 자동차용 카울크로스바의 복합인발공정 개발에 관한 연구)

  • Kim, H.S.;Youn, J.W.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.538-543
    • /
    • 2009
  • The cowl cross bar of an automobile is a frame component that is installed inside the cockpit module to provide a guide surface, to which functional components for electricity and air condition are attached. In the recent years, the geometries of cowl cross bars are getting more complex in order to meet the demands of a wide variety of embedded functional components and the reduced weight of frame parts with enhanced mechanical and noise/vibration characteristics. There for, welding processes between tubes with different diameters are widely conducted while the welded parts are experiencing various problems such as undermined appearance, low production efficiency and poor mechanical characteristics. Therefore, this paper seeks to develop an one-piece forming process which eliminate welding process for the cowl cross bar by applying the tube drawing process. However, it was predicted that a conventional tube drawing can not be applied directly to the current part since the area reduction ratio of the drawing process reaches 51.7% which exceeds the general limiting value. Therefore, in this study, a combined drawing process which adds a compressive force to a tensile force of the conventional drawing process was proposed and 2-stage drawing process was designed by using CAE analyses. In addition, drawing tryouts were carried out by using the manufactured combined drawing machine in order to verify the designed process.

A Study on the Development of Multi-pilotting-type Progressive Die for U-bending Part Process

  • Sim, Sung-Bo;Lee, Sung-Taeg;Jang, Chan-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.45-51
    • /
    • 2003
  • The multi-piloting type progressive die for U-bending sheet metal production part is a very specific division. This study reveals the sheet metal forming process with multi-forming die by center carrier type feeding system. Through the FEM simulation by DEFORM, it was accepted to u-bending process as the first performance to design of strip process layout. The next process of die development was studied according to sequence of die development, i.e die structure, machining condition for die making, die materials, heat treatment of partially die components, know-how and so on. The feature of this study is the die development of scrapless progressive die of multi-stage through the modeling on the I-DEAS program, components drawing on the Auto-LISP, CAD/CAM application, ordinary machine tool operating and revision by tryout.

  • PDF