• 제목/요약/키워드: Drawing Force

Search Result 221, Processing Time 0.024 seconds

A study on the factors affecting to material inflow in the drawing process (드로잉 공정에서 소재 유입에 영향을 미치는 인자에 관한 연구)

  • Lee, Sung-Min;Shin, Jin-Hee;Kim, Kyung-A;Lee, Chun-Kyn
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.39-45
    • /
    • 2022
  • Sheet Metal Forming by Press Forming Process takes a lot of time and cost from mold design to manufacturing. Therefore, all of die-makers are continuously conducting research to reduce the number of mold processes or the size of blanks to reduce costs. In the case of Forming complex shapes such as automobile component, wrinkles and cracks occur, so draw beads are used. Draw beads play an important role in suppressing the inflow of materials and minimizing the size of blanks. Factors that affect material flow include draw bead, blank holding pressure, lubricant, and surface roughness of punch and die. Most of the factors affect friction. In this study, after classifying circular beads and rectangular beads in cylindrical drawing molds using the AutoForm analysis program, the factors affecting the material inflow were considered.

Springback tendency with the variable blank holding force in the drawing process of the UHSS (초고강도강판 드로잉 성형에서 가변 블랭크 홀딩력에 의한 스프링백 경향)

  • Kwak, Jung-Hwan;Jung, Chul-Young;Kim, Se-Ho;Song, Jung-Han
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.60-65
    • /
    • 2018
  • The production of the automotive parts with the ultra high strength steel usually involves large amount of springback as well as fracture during the cold stamping process. Variable blank holding force(VBHF) can be used as one of the effective process parameters to reduce the springback amount with achieving better condition of formability. In this paper, VBHF with respect to the punch stroke is applied to the stamping process of the front side rear lower member for reducing the springback amount. From the analyses with constant blank holding force(CBHF), 24 kinds of VBHF conditions are utilized to investigate the springback tendency. It is noted that springback can be effectively reduced when BHF is increased near the bottom dead center because VBHF provides the tensile force to the blank with an adequate level of deformation without fracture.

Investigating 6th Grade Students' Ideas about the Action of Force through an Analysis of their 'Typically-Perceived-Situation (TPS)' (전형적 인식상황(TPS)' 분석을 통한 6학년 학생들의 힘의 작용에 관한 생각 조사)

  • 정용재;송진웅
    • Journal of Korean Elementary Science Education
    • /
    • v.23 no.3
    • /
    • pp.238-250
    • /
    • 2004
  • For effective conceptual teaching (or teaming) of physics, it needs to know more information about students' ideas related to specific topics. The purpose of this study was to investigate 6th grade students' various ideas about the actions of force, especially' the situation where force is being acted', and' the situation where force is not being acted', through the analysis of their 'Typically-Perceived-Situation (TPS)'. The TPSs of 152 6th grade students were collected with a drawing-and-explanation type questionnaire, and their TPSs about the action of force were categorized by the background, the subject, the object, the action, and the result of action, etc. It was found that most of students' ideas about 'force is being acted' were related to the situation where the impact by or on human body caused to the change of position in familiar everyday life scene. Thus their ideas were strong related to human body, including sensual factors such as 'pain'. And it also was found that most of students' ideas about 'force is not being acted' were in a strong relation to familiar everyday life situations there is no change of position because force was not given by a human body, or energy was not supplied. Most students thought that force is similar to energy which should be supplied from outside or generated by itself. These results suggest that the teaching strategies focused on familiar everyday life background including sensual factors and human body need to be explored in conceptual loaming of physics.

  • PDF

An Analysis of Axisymmetric Deep Drawing by the Energy Method (에너지법에 의한 축대칭 디프드로잉의 해석)

  • 양동열;이항수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.51-61
    • /
    • 1993
  • A systematic approach of the energy method is proposed for analysis of axisymmetric deep drawing in which the total deforming region is divided into five sections by the geometric characteristic. The corresponding solution is found through optimization of the total energy dissipation with respect to some parameters assumed in the kinematically admissible velocity field defined over each region. The sheet blank is divided into three-or five-layers to consider the bending effect. For the evaluation of frictional energy, it is assumed that the blank holding force acts on the outer rim of the flange and that the contact pressure acting on punch shoulder or die shoulder has uniform distributions, respectively. The computed results by the present method are compared with the experiment and the computed results by the elastic-plastic finite element method for the distribution of thickness strain and the relation between the punch stroke and punch load. The results for the case of multi-layers show better agreements than for the case of a single layer in load vs. stroke relation and strain distribution. It is thus shown that the multi-layer technique can be effectively employed in analyzing axisymmetric deep drawing in connection with the energy method.

Science High-School Students Understanding of Velocity & Acceleration and of the Motion of Bob When Tension is Removed in a Simple Pendulum

  • Kim, Young-Min;Jeong, Seong-Oh
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.5
    • /
    • pp.611-619
    • /
    • 2006
  • The aims of this study are to investigate science high school students' understanding of velocity and acceleration of a simple pendulum bob, and to investigate their understanding of inertia and gravitational force in the motion of a pendulum bob when the tension is removed. For the study, 46 students that had already studied the physical, concepts in simple pendulum were sampled from a science high school in a large city in Korea. For a comparison with general high school students' conceptions, 49 students were sampled from a general high school in the same city. The test tool for the investigation consisted of four drawing and simple-answering type questions developed by the authors. The outcomes of the study revealed that a substantial number of science high school students have misconceptions concerning acceleration in pendulum motion, and that many of them do not understand the relationship between force and acceleration. In addition, the results of the study showed that more than 30% of the students drew the path of a bob going along the tangential direction at the highest point of the motion, and approximately 20% of them drew the path of a bob falling straight down at the lowest point of the motion.

Analysis on the Effect of Material and Forming Conditions on the Cup Earing by Taguchi Method (실험계획법을 이용한 컵 귀발생의 영향인자 해석)

  • 정기조
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.30.1-33
    • /
    • 1999
  • Finite element simulation with experimental analysis of Taguchi's orthogonal array was carried out to know the effects of material and forming parameters on the cup earing and skewness. It was revealed that the planar anisotropy was the most influencing factor in the cup ear formation whereas blank holding force and material properties such as strength and thickness deviation at the coil edge had a relatively high effect on the cup skewness.

  • PDF

Design of Drawbeads for Advanced High Strength Steel Sheet Forming (초고강도 강판 성형용 드로비드 설계)

  • Kim, B.G.;Jeong, J.Y.;Kim, D.J.;Kim, G.S.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.420-423
    • /
    • 2009
  • In this study, the guideline for designing the drawbeads used in the stamping dies for advanced high strength steel (AHSS) sheets is investigated. In the drawbead drawing test, the drawbead forces for verifying the equivalent drawbead model(EDM) and the sheet strains for finding marginal strains from $FLC_0$ are measured. In the finite element analysis (FEA), the bending allowance, R/t, is obtained. Based on the forming and bending allowances obtained, the design guideline of the drawbead for determining height and width, which depends on the restraining force and the forming allowance, is prepared by using EDM.

  • PDF

A Study on the FEM/GEM for Sectional Analysis of Deep Drawing Panels (딥드로잉 판넬의 단면성형 해석을 위한 유한요소법/기하학힘평형법에 관한 연구)

  • 김종필;금영덕;이종문
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.212-217
    • /
    • 1993
  • A 2-dimensional FEM/GEM program was developed for analyzing forming processes of an arbitrarily shaped draw-die, in which plane strain condition is assumed and linear line elements are employed. FEM formulation adopted a new algorithm for solving force equilibrium as well as non-penetration condition simultaneously. For the case of numerical divergence at nearly final forming stages and the initial guess in Newton-Raphson iterations, geometric force equilibrium method(GEM) is also introduced. The developed program was tested with the simulation of stamping processes of automotive bonnet inner pannel in order to verify the usefulness and validity of FEM/GEM formulation.

  • PDF

A Study on the Three-Dimensional Finite Element Analysis of Forming Processes of an Automotive Panel (자동차패널 성형공정의 3차원 유한요소해석에 관한 연구)

  • 이종문;김종원;안병직;금영탁
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.06a
    • /
    • pp.75-86
    • /
    • 1996
  • Three-Dimensional finite element analysis is performed using PAM-STAMP for design evaluation of automotive back door inner panel die. Gravity process by blanks own weight, binder-wrap process, and drawing process in the forming operations are sequentially simulated with Virtual Manufacturing Method. The most valuable result in this research is that 3-D FEM analysis can be applied to the design evaluation of draw die in the die try-out, though effects of mesh size and drawbead resistance force on the numerical accuracy are much sensitive. For the intensive application to draw-die design and try-out, the experimental know-hows about the forming variables such as friction coefficient, punch velocity, drawbead force, etc are necessary.

Development of Drawbead Expert Models for Finite Element Analysis of Sheet Metal Forming Processes(Part 2:Modeling) (박판성형공정의 유한요소해석을 위한 드로우비드 전문모델 개발(2부: 모델링))

  • Keum, Yeong-Tak;Lee, Jae-U
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.12-22
    • /
    • 1998
  • An expert drawbead model is developed for the finite element analysis of stamping processes. The expert model calculates drawbead restraining forces and bead-exit thinnings with the forming condi-tions and drawbead size. The drawbead restraining forces and bead-exit thinnings of a circular draw-bead and stepped drawbead are computed by mathematical models and corrected by the multiple lin-ear regression method based on experimental measurements. The squared drawbead preventing the sheet from drawing-in inside die cavity is assumed to have a very huge drawbead restraining force and no pre-strain just after drawbead. The combined beads are considered as a combination of basic draw-beads such as circular a drawbead stepped drawbead and squared drawbead so that the drawbead restraining forces and bead-exit thinnigs are basically sum of those of basic drawbeads.

  • PDF