• Title/Summary/Keyword: Drawdown test

Search Result 47, Processing Time 0.029 seconds

Implementation of Infinite Boundary Condition Considering Superposed Theory on SVE Remediation System (토양증기추출복원 시스템에서 중첩이론을 고려한 무한 경계조건 실행)

  • Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.3
    • /
    • pp.9-16
    • /
    • 2007
  • Soil vapor extraction (SVE) is an effective and cost efficient method of removing volatile organic compounds (VOCs) and petroleum hydrocarbons from unsaturated soils. Incorporating PVDs in an SVE system can extend the effectiveness of SVE to lower permeability soils by shortening the air flow-paths and ultimately expediting contaminant removal. With this approach, the real bounded system is replaced for the purposes of analysis by an imaginary system of infinite areal extent. The boundary conditions for the contaminant remediation model test include constant head and no flow condition. Due to these parallel boundaries conditions, image wells should be developed in order to maintain the condition of no flow across the impermeable boundary. It is also assumed that the flow is drawdown along the constant head boundary condition. The factors contributing to the difference between the theoretical and measured pressure heads were also analyzed. The flow factor increases as the flow rate is increased. The flow rate is the most important factor that affects the difference between the measured and theoretical pressure heads.

  • PDF

A Field Verification Study on the Effect of Filter Layers on Groundwater Level Drop Characteristics, Permeability, Optimum Yield and Well Efficiency in the Unconfined Aquifer Well for Riverbank Filtration Intake (강변여과수 취수를 위한 충적우물에서 필터층이 수위강하특성, 투수성, 적정양수량 및 우물효율에 미치는 영향에 대한 현장실증 연구)

  • Song, Jae-Yong;Lee, Sang-Moo;Kang, Byeong-Cheon;Lee, Geun-Chun;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.509-529
    • /
    • 2019
  • This study performs to evaluate the role of filter material at alluvial well for intake of riverbank filtration and the applicability and improvement effect of dual filter well. To achieve this objective, dual filter intake well and single filter intake well were installed with different filter conditions at riverbank free surface aquifer in soil layer then we evaluated filter material condition, permeability, optimum yield and well efficiency according to yield in drawdown test. As a results, we assumed forming dual filter layer minimizes sudden speed changes at boundary between aquifer and filter layer by cushioning of groundwater flow. This suppresses warm current then intake groundwater efficiently, therefore it seems decreasing peripheral groundwater level changes in spite of higher intake water amount than single filter intake well. Furthermore, we confirmed by test, installing dual filter improves permeability, optimum yield and well efficiency. The result will be used by combining with former study to set up standard of design/construction of dual filter intake well at alluvial aquifer layer. Furthermore, we expect this result will be used to prove application effect of dual filter intake well compared to single filter one and radial collector well which are mainly applied on riverbank filtration.

Variation Characteristics of Hydraulic Gradient and Major Flow Direction in the Landfill Soils (매립지 토양층의 수리경사와 주 흐름 방향의 변동특성)

  • Kim, Tae-Yeong;Kang, Dong-Hwan;Kim, Sung-Soo;Kwon, Byung-Hyuk
    • Journal of Environmental Science International
    • /
    • v.18 no.3
    • /
    • pp.315-323
    • /
    • 2009
  • Hydraulic gradient of the landfill soils is estimated by Devlin (2003) method, and its variation characteristics from rainfall and permeability of the aquifer material are analyzed. The study site of 18 m $\times$ 12 m is located in front of the Environment Research Center at the Pukyong National University, and core logging, slug/bail test and groundwater monitoring was performed. The sluglbail tests were performed in 9 wells (except BH9 well), and drawdown data with elapsed time for bail tests were analyzed using Bouwer-Rice and Hvorslev methods. The average hydraulic conductivity estimated in each of the test wells was ranged $1.991{\times}10^{-7}{\sim}4.714{\times}10^{-6}m/sec$, and the average hydraulic conductivity in the study site was estimated $2.376{\times}10^{-6}m/sec$ for arithmetic average, $1.655{\times}10^{-6}m/sec$ for geometric average and $9.366{\times}10^{-7}m/sec$ for harmonic average. The permeability of landfill soils was higher at the east side of the study site than at the west side. Groundwater level in 10 wells was monitored 44 times from October 2 to November 7, 2007. The groundwater level was ranged 1.187$\sim$1.610 m, and the average groundwater level range in each of the well showed 1.256$\sim$1.407 m. The groundwater level was higher at the east side than at the west side of the study site, and this distribution is identify to it of hydraulic conductivity. The hydraulie gradient and the major flow direction for 10 wells were estimated 0.0072$\sim$0.0093 and $81.7618{\sim}88.0836^{\circ}$, respectively. Also, the hydraulic gradient and the major flow direction for 9 wells were estimated 0.0102$\sim$0.0124 and $84.6822{\sim}89.1174^{\circ}$, respectively. The hydraulic gradient of the study site increased from rainfall (83.5 mm) on October 7, causing by that the groundwater level of the site with high permeability was higher. The hydraulic gradient estimated on and after October 16 was stable, due to almost no rainfall. Thus, it was confirmed that the variation of the hydraulic gradient in the landfill soils was controlled by the rainfall.

Numerical Analysis and Exploring of Ground Condition during Groundwater Drawdown Environment in Open-cut Type Excavation (개착식 굴착공사시 지하수위 저하로 인한 지반상태 탐사 및 해석기법 연구)

  • Han, Yushik
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.93-105
    • /
    • 2018
  • Precise investigation and interpretation of the ground subsidence risk factors needed to predict and evaluate the settlement problems of the surrounding ground due to the ground excavation. There are various geophysical exploration methods to investigate the ground subsidence risk factors. However, there are factors that influence the characteristics of the underground medium in these geophysical methods, and the actual soil contains complex factors affecting geophysical exploration. Therefore, it is necessary to analyze the effects on the geophysical methods based on the understanding of the geotechnical properties of soil. In this study, a test bed was constructed to consider various complicated factors in the complex ground and the ground behavior was analyzed by numerical analysis. In addition, we analyzed the limitations on investigating the ground subsidence risk factors through ground penetration radar (GPR) survey. As a result, ground subsidence of Open-cut Type Excavation is caused by various factors. Especially, in the case of soft ground condition, it was found that it was greatly influenced by the flow change of groundwater level. At the center frequency of GPR of 250 MHz, the attenuation of the electromagnetic wave is severely attenuated in the clay with high electrical conductivity, making it difficult to penetrate deeply into the ground (4 m below the surface). As the electromagnetic waves pass through the groundwater level below the groundwater, the attenuation of the electromagnetic waves becomes severe.

Potential Applicability of Moist-soil Management Wetland as Migratory Waterbird Habitat in Republic of Korea (이동성 물새 서식지로서 습윤토양관리 습지의 국내 적용 가능성)

  • Steele, Marla L.;Yoon, Jihyun;Kim, Jae Geun;Kang, Sung-Ryong
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.295-303
    • /
    • 2018
  • Inland wetlands in the Republic of Korea provide key breeding and wintering habitats, while coastal wetlands provide nutrient-rich habitats for stopover sites for East Asia/Australasia Flyway(EAAF) migrants. However, since the 1960's, Korea has reclaimed these coastal wetlands gradually for agriculture and urban expansion. The habitat loss has rippled across global populations of migrant shorebirds in EAAF. To protect a similar loss, the United States, specifically Missouri, developed the moist-soil management technique. Wetland impoundments are constructed from levees with water-flow control gates with specific soils, topography, available water sources, and target goals. The impoundments are subjected to a combination of carefully timed and regulated flooding and drawdown regimes with occasional soil disturbance. This serves a dual purpose of removing undesirable vegetation, while maximizing habitat and forage for wildlife. Flooding and drawdown schedules must be dynamic with constantly shifting climate conditions. Korea's latitude ($N33^{\circ}25^{\prime}{\sim}N38^{\circ}37^{\prime}$) is comparable to Missouri ($N36^{\circ}69^{\prime}{\sim}N40^{\circ}41^{\prime}$); as such, moist-soil management could prove to be an effective wetland restoration technique for Korea. In order to meet specific conservation goals (i.e. shorebird staging site restoration), it is necessary to test the proposed methodology on a site that can meet the required specifications for moist-soil management. Moist-soil management has the potential to not only create key habitat for endangered wildlife, but also provide valuable ecosystem services, including water filtration.

Study on Permeability, Optimum Yield and Long-term Stability in Alluvial Well with Filter Layer Change (충적우물에서 필터층 변화에 따른 투수특성, 적정양수량 및 장기적 안정성에 대한 연구)

  • Song, Jae-Yong;Lee, Sang-Moo;Choi, Yong-Soo;Kim, Ki-Joon;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.101-115
    • /
    • 2018
  • This study was carried out to evaluate the effects of various filter conditions on unconfined aquifer (alluvial aquifer). We made model test device which has filter layer, pumping well and observation well which consist of sand layer and gravel layer to test. Step drawdown test and long term pumping tests were carried out using the device. The permeability characteristics of each test group were confirmed and the optimal yield was calculated. As a result of comparing the optimal yield of double filter and single filter in sand, dual-filter SD-300 was valued at 216.8 % higher final optimal yield than single-filter SS-300. Comparing the dual filter SD-300 and the single filter SS-100 with a thin filter layer, dual-filter SD-300 was valued at 709.2% higher final optimal yield than single-filter SS-300. As a result of analysis of optimal yield change over time, It was confirmed that the ratio of optimal yield of single filter and dual filter increase over time. In order to evaluate the long-term change in water intake efficiency, we considered the point at which the initial optimal yield was reduced by 50%. The dual filter SD-300 is about 351.1% higher than SS-300, which is the same thickness filter, and about 579.0% higher than SS-100. From these results, Assuming that the point at which the initial quantity of water intake is reduced to 50% is the well life, double filters are expected to increase their lifespan by about 3.5 times over single filters of the same thickness and by about 5.8 times over typical single filter. These results can be used to design wells to river bank filtration or filtered seawater. In addition, it is possible to clarify the effect of the double filter through the comparison with the future field test results.

Experimental Study on the Effect of Filter Layers on Pumping Capacity and Well Efficiency in an Unconfined Aquifer (자유면대수층에서 필터층이 취수량 및 우물효율에 미치는 영향에 대한 실험적 연구)

  • Song, Jae-Yong;Lee, Sang-Moo;Choi, Yong-Soo;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.405-416
    • /
    • 2017
  • This study evaluated a model unconfined aquifer comprising a sand or gravel layer, a filter layer, a pumping well, and an observation well. The model was employed in step drawdown tests and then used to assess the permeability of each test tank. The optimal yield and well efficiency were then calculated. Evaluation of yield by step in sand layer filters of equal thickness gave optimized watering rates of 22.03 L/min in the double filter and 19.71 L/min in the single filter. The double filter's yield was 115.0% that of the single filter. A comparison of double and single filters, each 10 cm thick, showed the double filter to have a maximum yield of 182.7%. Yields for the gravel layer were 73.56 L/min for a double filter and 65.47 L/min for a single filter of the same thickness; the former value is 112.3% of that of the latter. Comparison of double and single filters with 10-cm-thick gravel layers revealed that the double filter had a maximum yield of 160.9%. Results for sand wells showed the double filter to have a maximum efficiency of 70.4% and the single filter to have a minimum efficiency of 37.1%. Gravel-layer well efficiencies were >66.5% for both double and single filters (each 30 cm thick), but only 22.5% for a 10-cm-thick single filter. This study confirms that permeability improved as the filter material became thicker; it also shows that a double filter has a higher yield and well efficiency than a single filter. These results can be applied to the practical design of wells.