• Title/Summary/Keyword: Drawdown

Search Result 201, Processing Time 0.032 seconds

Implementation of Infinite Boundary Condition Considering Superposed Theory on SVE Remediation System (토양증기추출복원 시스템에서 중첩이론을 고려한 무한 경계조건 실행)

  • Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.3
    • /
    • pp.9-16
    • /
    • 2007
  • Soil vapor extraction (SVE) is an effective and cost efficient method of removing volatile organic compounds (VOCs) and petroleum hydrocarbons from unsaturated soils. Incorporating PVDs in an SVE system can extend the effectiveness of SVE to lower permeability soils by shortening the air flow-paths and ultimately expediting contaminant removal. With this approach, the real bounded system is replaced for the purposes of analysis by an imaginary system of infinite areal extent. The boundary conditions for the contaminant remediation model test include constant head and no flow condition. Due to these parallel boundaries conditions, image wells should be developed in order to maintain the condition of no flow across the impermeable boundary. It is also assumed that the flow is drawdown along the constant head boundary condition. The factors contributing to the difference between the theoretical and measured pressure heads were also analyzed. The flow factor increases as the flow rate is increased. The flow rate is the most important factor that affects the difference between the measured and theoretical pressure heads.

  • PDF

The Correlation between the Precipitation considering Critical Infiltration and Groundwater Level in Ssangchun Watershed (한계침투링을 고려한 쌍천유역의 강수량과 지하수위의 상관관계)

  • Yang Jeong-Seok;Lim Chang-Hwa;Park Jae-Hyeon;Park Chang-Kun;Jeong Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.303-307
    • /
    • 2005
  • Severe drawdown of Groundwater level(CWL) is observed from the analysis of the relationship between precipitation and CWL data during dry seasons in Ssangchun watershed. For Ssangchun watershed, the correlation was the strongest when we apply 70 day Moving Average(MA) for Groundwater dam Operation Index(COI) calculation. To determine the critical infiltration, which is the spatially averaged maximum daily infiltration, a certain value is fixed as the maximum infiltration and precipitation data is modified. COI is recalculated after the data modification and the correlation between COI and GWL is checked. The critical infiltration is determined when the best correlation is obtained after we repeat the above procedure with different fixed values. The critical infiltration is 40m for Ssangchun watershed. The correlation between CWL and COI is higher when we consider critical infiltration than we neglected it.

A Study on the Integrated Computer Program for the Multi Analysis of In-Situ Aquifer and Geothermal Response Test (현장 열응답시험과 현장 대수성시험결과를 동시 분석 가능한 통합전산 Program에 관한 연구)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang;Yonn, Yun-Sang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.4 no.1
    • /
    • pp.11-19
    • /
    • 2008
  • Groundwater flow in confined aquifer and heat transport in underground geologic media are using same governing equation(line source) like well fuction. Therefore the conventional slope method using only later data obtained from in-situ thermal response test to determine the thermal conductivity of vertical geothermal heat exchanger(GHEX) is basically identical with one of Theis straight line method of aquifer test under artesian condition. In case that the pumping rate(Q, $m^3$/d) and drawdown(s,m) which are used for input data of existing hydrogeologic computer programs for aquifer test are replaced and converted to supplying heat energy per unit length of bore hole(Q/L,w/m or Kcal/h.m) and temperatures (T,$^{\circ}C$)measured at in and out-let of GHEX as in put data respectively, thermal conductivity around geothermal heat exchanger can be easily estimated without any special modification of the existing hydrogeologic computer program. Two numbers of time series temperature variation data obtained from in situ geothermal response test are analized using Theismethods(standard curve and straight line method) by using existing aquifer test program and conventional Slope method proposed by ASHRAE. The results show that thermal conductivity values estimated by two straight methods are identical and the difference of estimated values between standard curve methods and Slope method are also within acceptable ranges. In general,the thermal conductivity estimated from Theis straight linemethod gives more accurate value than the one of Slope method due to that Slope method uses only visual matching otherwise Theis method uses automatic curve matching estimation with reducing RSS.

  • PDF

Leachate Behavior within the Domestic Seashore Landfill(II)- Numerical Analysis of Pumping Method for Reducing Leachate Level - (폐기물 매립지 내에서의 침출수 거동(II)- 누적수위 저감을 위한 양수법의 수치해석 -)

  • 장연수;조용주
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.111-120
    • /
    • 1999
  • Leachate flow behavior due to intermediate cover soil of low hydraulic conductivity and the applicability of pumping method for reducing the leachate level in the landfill are analyzed with the numerical flow model, MODFLOW. Using the hydraulic conductivity and storativity data obtained from the field pumping and slug tests(Jang and Cho, 1999), the hydraulic condition within the landfill is validated. The optimum rate of pumping, the radius of influence, and the efficiency of horizontal drain are analyzed for reducing the leachate level in the landfill. From the results of the analyses, the barrier effect that the buried cover soil of low hydraulic conductivity prevents the vertical movement of leachate flow through the cover soil, which is found from the in-situ geotechnical studies(Jang and Cho, 1999), is identified again. Also, the installation of horizontal drains to the pumping well can increase the pumping rate from 120 ton/day per a well to 300 ton/day. The length of horizontal drain did not influence significantly on the drawdown-time curve of leachate in the landfill.

  • PDF

Ecological Assessment of Plant Succession and Water Quality in Abandoned Rice Fields

  • Byun, Chae-Ho;Kwon, Gi-Jin;Lee, Do-Won;Wojdak, Jeremy M.;Kim, Jae-Geun
    • Journal of Ecology and Environment
    • /
    • v.31 no.3
    • /
    • pp.213-223
    • /
    • 2008
  • The increasing area of abandoned rice fields could provide new opportunities for wetland restoration in Asia. However, it is unknown how quickly or completely abandoned rice fields will recover from agricultural disturbances. We assessed water quality and plant community succession in abandoned rice fields with different hydrology in a mountain valley to understand the effects of hydrological regime on recovery. Water level, soil redox potential, water quality, plant composition, and primary production were measured. The sites, coded as D6, N13, and N16, had been recovering for 6, 13, and 16 years by 2006. N13 and N16 have been recovering naturally whereas D6 has been drained with a nearby dike and was tilled in 2001. The typical hydroperiods of D6, N13, and N16 were no surface water, permanently flooded, and seasonally flooded, respectively. The major change in vegetation structure of both D6 and N13 was the replacement of herbaceous species by woody species. Drawdown accelerated this change because Salix koreensis grew better in damp conditions than in flooded conditions. Phragmites japonica reduced plot-level plant species richness. The removal efficiency of $NH_4-N$, $NO_3-N$, and $PO_4-P$ from water varied seasonally, ranging between -78.8 to 44.3%, 0 to 97.5%, and -26.0 to 44.4%, respectively. In summary, abandoned rice fields quickly became suitable habitat for native wetland plant species and improved regional water quality. Variation among our sites indicates that it is likely possible to manage abandoned rice fields, mostly through controlling hydrology, to achieve site-specific restoration goals.

A Study on Pneumatic-Fracturing for Development of Groundwater in Rock Mass (공압파쇄를 이용한 지하수량 증가에 대한 연구)

  • 김종태;정교철;부성안;김진성;김혜빈
    • The Journal of Engineering Geology
    • /
    • v.14 no.2
    • /
    • pp.189-197
    • /
    • 2004
  • For a long time, groundwater has been used for a substitution for surface water but recently many problems have risen due to shortage of water resources and decrepitude of waterwells. Pneumatic fracturing technique is likely to be an efficient way to solve the problem of tile wells, in which pressure under the ground is applied to increase the amount of ground water. When applied pressure is given artificially to unstabilize the rock stress or to remove substances between fractures the groundwater can inflow. As the air pressure applied on the base rocks is stronger, permeability is getting higher, thus producing much groundwater than ever before. The result of this study show 15% increase of pumping rate in the P-5 well. After pneumatic fracturing pumping rate changed from 26m3/day to 30m3/day, drawdown rate increase from 51.12m to 56.58m, and specific yield also increased from 0.51m3/day to 0.53m3/day.

A Study on the Recharge Characteristics of Groundwater in Subcatchment including Spring Water Wells (샘물 취수정이 위치한 소유역의 지하수함양 특성에 관한 연구)

  • Son, Doo Gie;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.303-314
    • /
    • 2020
  • Bottled water companies submit monthly hydrologic data including periodical environmental effects investigation, daily water production capacity, water production, water level, water chemistry (pH, EC, temperature) per hour and strictly manage groundwater by periodical analyses. Thus few problems concerning drawdown due to excess intake of groundwater take place. Nevertheless, bottled water companies are imprinted as a contribution to civil affairs resulted regarding groundwater near the companies. Therefore, a new method is required during water balance analysis in environmental effects evaluation, which should be compatible with the evaluation by hydrologic experts as well more accessible to non-experts. In this study, water level of surface water and recharge rate in subcatchment where water production wells are located were measured and monthly baseflow rates were separated from normal streams. Besides, recharge properties of groundwater and surface water in the same catchment area were estimated using analyses of oxygen and hydrogen isotopes in groundwater (production well), surface water, and rainfall.

Centrifuge tests for simulating the behavior of CFRD with increasing water level (수위 상승에 따른 CFRD(콘크리트 표면차수벽형 석괴댐)의 거동 모사 원심모형시험)

  • Seo, Min-Woo;Im, Eun-Sang;Kim, Yong-Seong;Ha, Ik-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.784-793
    • /
    • 2006
  • As the number of CFRD constructions increases, the necessity of an accurate assessment on its behavior also has been increasing accordingly. The performance of concrete faced rockfill dam (CFRD) under different water levels is greatly concerned by dam engineers and designers in the world. However, domestic research on CFRD design and construction has yet been insignificant. This study deals with three centrifuge model tests, mainly investigates the deformation of the concrete faced slabs with different face slab stiffness under different water levels. The prototype of a centrifugal model dam is half size of domestic CFRD dam. Detailed material preparation, model design, model set-up, model instrumentation and testing procedures are presented. In order to simulate the prototype concrete faced slab, three kinds of thin fiberglass plates with different thickness was adopted in the three model tests. The water level control facility was specially designed for this experiment to control the water level rise and drawdown during centrifuge flight. Although most of the results from the three model tests are satisfactory, it is also required that the centrifuge test results should be compared with those of numerical analysis and field measurements to analyze the centrifuge test results more in detail.

  • PDF

Physical and chemical analyses of ground-water by impacts of tunneling at coastal urban region in Busan (부산시 해안 인근 지역에서의 터널 굴착에 따른 지하수 거동 영향 평가)

  • Kim, Hyoung-Soo;Lee, Ju-Hyun;Ahn, Ju-Hee;Jeong, Ui-Jin;Kim, Jun-Mo;Yoon, Woon-Sang;Chung, Sang-Yong;Lee, Jin-Moo;Woo, Sang-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.457-464
    • /
    • 2005
  • In the case of tunneling, the equilibrium state of hydro-geologic environments destroy and change abruptly in some section of whole works. Specially, it's very possible for seawater to intrude toward the site of tunnel if the field is nearly located in a costal region. In this study, we have evaluated the mechanism related between groundwater flow and seawater intrusion that by impacts of tunneling. Various hydro-geological field tests have performed for getting four representative hydrogeologic properties of geologic formations such as transmissivity (T), storativity(S), longitudial dispersity(${\alpha}_L$), and effective porosity($n_e$). For the effect of tunneling, the numerical model was first simulated based on the governing equation of groundwater flow. The results showed that the maximum drawdown was 17.2m and the total inflow into the tunnel had the range from 0.48 to $3.63m^3/day/m$. Secondly, the three dimensional numerical model was analyzed to investigate a characteristic of seawater intrusion based on the previous simulated results of groundwater flow. The results showed the seawater moved as the range of $200{\sim}220m$ from the initial interface between seawater and groundwater toward the tunnel.

  • PDF

Application of risk analysis and assessment considering tunnel stability and environmental effects in tunnel design (터널 안정성 및 환경성을 고려한 위험도 평가기법의 적용)

  • Kim, Young-Geun;Kim, Do-Hyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • Recently, because of the various factors by uncertainty of underground, the risks in tunnelling have been occurred increasingly. Therefore, it is very important to estimate and control the risks considering geotechnical conditions for tunnel stability and environmental problems by tunnel construction. In this study, the risk analysis for tunnel stability was carried out by classifying the risk factors such as ground support capacity, ground settlement, the inflow of groundwater into the tunnel and the damage by the earthquake. Also, the risk assessment for the environmental problems was performed by calculating the vibration and noise by blasting and the drawdown of the groundwater level caused by tunnel construction. Each risk factor was evaluated quantitatively based on the probabilistic and statistic technique, then it was analyzed the distribution characteristic along overall tunnel site. Finally, it was evaluated that how much each risk factor influences on the construction cost with a period for tunnel construction, so it is possible to perform reasonable tunnel design which was capable of minimizing the risks in the tunnel construction.

  • PDF