• Title/Summary/Keyword: Drawdown

Search Result 201, Processing Time 0.032 seconds

Evaluation of Degradation and Safety of Small Agricultural Reservoir (소규모 농업용 저수지의 노후도 및 안전도 평가 -고삼 저수지에 대한 사례 연구-)

  • 장병옥;박영곤;우철웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.1
    • /
    • pp.49-56
    • /
    • 1998
  • Ths study was peformed to evaluate the degree of degradation and safety of a small agricultural reservoir, Kosam Reservoir, in Kyungki Province. Evaluation was done by the program developed by the authors. Results of the study are as follows: 1) Although many burrows were found in downstream side of embankment and cracks were found in wall joining spillway, it appeared that degree of degradation of embankment was in good conditions. 2) Compressive strengths of concrete of crest, side channel, chute floor of spillway were in poor condition. But it appeared that overall degree of degradation of structures was in medium condition based on the criteria of the evaluation system 3) From the analysis of slope stability, safety factor of downstream slope was over 3.3 for the worst condition, such as flood and high water level and that of upstream slope was also over 3.6 for rapid drawdown. In case of earthquake, safety factors were over 2.5 for all conditions. Therefore embankment slopes of Kosam Reservoir were very stable for normal and earthquake condition. 4) As upon assumed failure of embankment of Kosam Reservoir, degree of damage was estimated to be very serious because of many loss of life and properties in the downstream area. 5) Overall grade of safety of Kosam Reservoir was in good condition. Therefore safety was considered to be "No problems" at the present time but further degradation may be proceeded partly and continuously as time goes by.e goes by.

  • PDF

Hydraulic and hydrological study on the change in groundwater level during tunnel construction (산악 터널시공에 따른 주변 지하수위 변화에 대한 수리 및 수문학적 해석)

  • Kim, Sun-Myung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.2
    • /
    • pp.97-114
    • /
    • 2011
  • It is not uncommon that private wells and small streams are used for daily life in the regions where mountain tunnels are located. Then serious social problems such as well water level fall, being attributable to tunnel excavation can occur. In the design stage, firstly we evaluated that the quantity of leakage water into tunnels. And groundwater drawdown area was simulated using numerical modeling such as MODFLOW to reduce adverse effects on life environment around tunnel. In addition we also used hydrological method to evaluate the groundwater change of tunnel area.

Full-Scale Model Test of Vertical Drain Materials using Recycled Aggregates and Crushed Stone (순환골재와 쇄석을 이용한 연직배수재의 실내모형실험)

  • Lee, Dal-Won;Lee, Jeong-Jun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.103-111
    • /
    • 2012
  • In this study, the full-scale laboratory model test on utilization of recycled aggregates and crushed stone as vertical drains to use an alternative material of sand in soft ground is performed. The settlement and pore water pressure were measured to evaluate the discharge capacity and filed application, and the results were compared and analyzed through the finite element method. The measured and estimated settlement in all vertical drain materials decreases gradually with the load increase. The measured settlement 6.55~8.63 mm, and the estimated by the Hyperbolic model was 7.45~7.92 mm. So the model used for the analysis can be applied to the settlement estimation of the actual field. The variations of pore water pressure with time showed constantly regardless of the load in all vertical drainage materials. The pore water pressure was similarity to that of sand after rapid drawdown. Therefore, it was applicable to the field because discharge capacity was enough to be an alternative material to the sand which had been being used as the vertical drains.

Artificial Intelligence (AI)-based Deep Excavation Designed Program

  • Yoo, Chungsik;Aizaz, Haider Syed;Abbas, Qaisar;Yang, Jaewon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.277-292
    • /
    • 2018
  • This paper presents the development and implementation of an artificial intelligence (AI)-based deep excavation induced wall and ground displacements and wall support member forces prediction program (ANN-EXCAV). The program has been developed in a C# environment by using the well-known AI technique artificial neural network (ANN). Program used ANN to predict the induced displacement, groundwater drawdown and wall and support member forces parameters for deep excavation project and run the stability check by comparing predict values to the calculated allowable values. Generalised ANNs were trained to predict the said parameters through databases generated by numerical analysis for cases that represented real field conditions. A practical example to run the ANN-EXCAV is illustrated in this paper. Results indicate that the program efficiently performed the calculations with a considerable accuracy, so it can be handy and robust tool for preliminary design of wall and support members for deep excavation project.

Axial compression performance of basalt-fiber-reinforced recycled-concrete-filled square steel tubular stub column

  • Zhang, Xianggang;Gao, Xiang;Wang, Xingguo;Meng, Ercong;Wang, Fang
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.559-571
    • /
    • 2020
  • This study aimed to inspect the axial compression mechanical performance of basalt-fiber-reinforced recycled - concrete (BFRRC)-filled square steel tubular stub column. The replacement ratio of recycled coarse aggregate (RCA) and the basalt fiber (BF) dosage were used as variation parameters, and the axial compression performance tests of 15 BFRRC-filled square steel tubular stub column specimens were conducted. The failure mode and the load-displacement/strain curve of the specimen were measured. The working process of the BFRRC-filled square steel tubular stub column was divided into three stages, namely, elastic-elastoplasticity, sudden drawdown, and plasticity. The influence of the design parameters on the peak bearing capacity, energy dissipation performance, and other axial compression performance indexes was discussed. A mathematical model of segmental stiffness degradation was proposed on the basis of the degradation law of combined secant-stiffness under axial compression. The full-process curve equation of axial compressive stress-strain was proposed by introducing the influencing factors, including the RCA replacement ratio and the BF dosage, and the calculated curve agreed well with the test-measured curve.

Developing an Entropic Drawdown-at-Risk (EDaR) Fluctuation Forecasting Model for Commodity Futures Market Using Entropy-Based Dependency and Causality Network Modularity (엔트로피 기반 인과관계 네트워크의 모듈성을 활용한 상품 선물 시장의 EDaR 변동 예측 모형 개발)

  • Choi, Insu;Kim, Woo Chang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.370-373
    • /
    • 2022
  • 본 연구에서는 전이 엔트로피 개념을 활용하여 주요 상품 선물의 하방 리스크 지수의 정보 흐름을 바탕으로 한 인과관계 네트워크를 구성하였다. 그리고 구성된 네트워크를 활용하여 금융 시장을 분석하였으며, 또한 정보 흐름의 존재 여부를 바탕으로 상품 선물의 하방 리스크 지수의 예측력이 개선될 수 있는지 확인하고자 하였다. 이를 위하여 정보 불확실성의 감소량을 측정하는 전이 엔트로피를 인과관계의 측정 지표로 상정하였으며, 전이 엔트로피 측정 시 발생할 수 있는 유한크기효과(finite size effect)를 조정하는 데 있어서 효과적인 지표인 효율적 전이 엔트로피를 활용하여 정보 흐름 네트워크를 구성하였으며 이를 이용하여 금융 지수 간의 인과관계를 분석하고 EDaR 의 등락 예측에 활용하였다. 그 결과, 금융 시장 지수를 효율적 전이 엔트로피를 이용한 인과관계 네트워크를 활용하여 금융 시장의 복잡계 네트워크 분석이 가능함을 확인하였고, 구성된 네트워크를 활용하여 국내 금융 시장 등락 예측에 있어 더 적은 데이터 열을 활용하여 거의 유사한 예측 결과를 냄으로써 상품 선물 시장 관련 예측의 데이터 열 선택에 활용할 수 있음을 확인하였다.

Flood Risk Management for Weirs: Integrated Application of Artificial Intelligence and RESCON Modelling for Maintaining Reservoir Safety

  • Idrees, Muhammad Bilal;Kim, Dongwook;Lee, Jin-Young;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.167-167
    • /
    • 2020
  • Annual sediment deposition in reservoirs behind weirs poses flood risk, while its accurate prediction remains a challenge. Sediment management by hydraulic flushing is an effective method to maintain reservoir storage. In this study, an integrated approach to predict sediment inflow and sediment flushing simulation in reservoirs is presented. The annual sediment inflow prediction was carried out with Artificial Neural Networks (ANN) modelling. RESCON model was applied for quantification of sediment flushing feasibility criteria. The integrated approach was applied on Sangju Weir and also on estuary of Nakdong River (NREB). The mean annual sediment inflow predicted at Sangju Weir and NREB was 400,000 ㎥ and 170,000 ㎥, respectively. The sediment characteristics gathered were used to setup RESCON model and sediment balance ratio (SBR) and long term capacity ratio (LTCR) were used as flushing efficiency indicators. For Sangju Weir, the flushing discharge, Qf = 140 ㎥/s with a drawdown of 5 m, and flushing duration, Tf = 10 days was necessary for efficient flushing. At NREB site, the parameters for efficient flushing were Qf = 80 ㎥/s, Tf = 5 days, N = 1, Elf = 2.24 m. The hydraulic flushing was concluded feasible for sediment management at both Sangju Weir and NREB.

  • PDF

Comparative Analysis of the Evaluation Method for Vunlnerable Period of Groundwater Level Drawdown in the Inland Area, Korea (내륙지역 지하수위 하강 취약시기 평가 방법 비교 분석 (가뭄 대응 지하수 활용 기술))

  • Lee, Jae-Beom;Yang, Jeong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.412-412
    • /
    • 2020
  • 기후변화로 인한 강우사상의 변화, 수자원 환경의 변화로 인하여 최근 한반도에 발생한 가뭄시기에 기존의 지표수자원 위주의 수자원 개발은 용수 확보의 측면에서 한계점이 발생하였다. 지하수자원은 최근 지속가능하고 안정적인 수원으로서 역할이 중요해지고 있는 상황이다. 본 연구는 지하수자원의 정량적 평가를 위하여 지하수자원을 대표할 수 있는 인자로 지하수위를 선택하였고, 남원시의 9개 소유역을 대상으로 시공간의 변동을 고려한 월 단위 지하수위 관리 취약성 평가 방법을 개발하였다. 지하수위 취약 시기 평가에서 강수의 지하대수층에 대한 영향을 고려하고 강수 자료의 적용 방법에 따라 유효 우량을 적용하는 방법과 한계침투량 개념을 적용한 강수 자료를 이용하는 방법을 이용하였고 취약 시기 평가 결과를 비교하였다. 지하수위 취약 시기 평가 기준을 개발하고, 엔트로피 방법을 이용하여 가중치를 선정하였으며 다중의사결정 방법을 통해 소유역 별로 지하수자원 취약 시기를 평가하였다. 본 연구에서 개발된 방법은 시공간적인 지하수자원의 효율적 관리 대책 수립의 근거가 될 수 있을 것으로 기대된다.

  • PDF

Reviewing the Assessment of Optimal Yield of Groundwater in Korea

  • Soo-Hyoung Lee;Jae Min Lee;Se-Yeong Hamm
    • Journal of Environmental Science International
    • /
    • v.33 no.7
    • /
    • pp.511-522
    • /
    • 2024
  • The optimal yield is defined as the amount of groundwater that maintains a dynamic equilibrium state of the groundwater system over a long period. We examined the current problems, improvements, and methods for estimating the optimal groundwater yield in Korea, considering sustainable groundwater development. The optimal yield for individual wells and the sustainable yield for the entire groundwater basin were reviewed. Generally, the optimal yield for individual wells can be determined using long-term pumping and step drawdown tests. The optimal yield can be determined by groundwater quantity and quality, economic, and water use rights factors. The optimal yield of individual wells in the groundwater basin must be determined within the total sustainable amount of the entire groundwater basin, such that the optimal yield of a new well must be less than the remaining total sustainable amount, exempting the total optimal yield of the existing wells. Therefore, the optimal yield may be determined based on the estimated optimal yield at least twice per year. In addition, if groundwater level and pumping quantity data for at least one year are available, it may be effective to use the Hill, Harding, and zero groundwater-level change methods to re-estimate the optimal yield.

Seepage Analysis of Rock -fill Dam Subjected to Water Level Fluctuation (수위가 변동하는 휠댐의 안정성 해석(I))

  • 이대수
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.65-78
    • /
    • 1996
  • The Chungpyung Dam is a 16 yearn old rock-fill dam for a Pumped storage hydro-Power plant, located in the middle of the Korean Peninsula. Since the dam is subjected to the daily water level fluctuation, such as rapid drawdown and refill, thus inducing a structural impact on the behavior of dam body, it draws attention of many engineering concerns. Traditionally, steady-state analysis was employed to investigate the seepage in the dam body, but in this study the seepage analysis was numerically performed by 2-D FEM thansient analysis. As a boundary condition for an analysis, the water level fluctuation was incorporated to simulate the daily change. As a res41t, the various seepage phenomena such as hydraulic gradient, seepage vector, and pore water pressure distribution were quantified at the corresponding time of interest as the water level rises and recedes. The seepage flux was also estimated and compared with the measured data which were both acceptable considering design criteria. The result proves that there is no sign of hazardous sources contributing to the possibility of piping, internal erosion and excess leakage through the dam body.

  • PDF