• Title/Summary/Keyword: Drawbar pull force

Search Result 5, Processing Time 0.019 seconds

Experimental Technique for Trafficability on Soft Benthic Terrain (II) : Straight-line Motion Test of Tracked Vehicle (해저 연약지반 주행성능 실험기법 연구 (II) : 직진주행성능시험)

  • Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo;Lee, Tae-Hee
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.116-120
    • /
    • 2003
  • To study the trafficability on soft and cohesive benthic terrain, a tracked vehicle model($670mm(L){\times}750mm(B_c)$) is designed and tested. The pitch and chevron angle of grouser, weight and center of gravity of vehicle, and drawbar pull force are chosen as experimental variables. Slip, sinkage and inclined angle of vehicle are picked as performance values. Strength of soil is considered as noise factor. A preliminary straight-line motion test is performed. Then, DOE(Design of Experiment) is discussed for further research.

  • PDF

An Experimental Study on Relationship of Tractive Force to Slip for Tracked Vehicle on Deep-sea Soft Sediment (심해저 연약지반용 무한궤도차량의 견인력-슬립 관계에 관한 실험적 연구)

  • Yeu, Tae-Kyeong;Park, Soung-Jea;Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo;Won, Moon-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.75-80
    • /
    • 2007
  • Measuring the ground speed and the rotation speeds of tracks is an easy and realistic method to detect the track slips. It is very advantageous if the slips can be measured and applied to real time control of the vehicle. With a proper speed, the tractive force of a tracked vehicle may be calculated from the vehicle dynamics. For the control of tracked vehicle, the relationship between the slip and the tractive force is necessary. In this paper, a series of drawbar-pull tests, in which slips of two tracks are measured under the variational draw-bar weight, is executed to directly obtain the slip-tractive force relationship. For the purpose of the test, a tractive vehicle model was manufactured, and an artificial soil was simulated by using a bentonite-water mixture.

Drawbar Pull Estimation in Agricultural Tractor Tires on Asphalt Road Surface using Magic Formula (Magic Formula를 이용한 아스팔트 노면에서의 농업용 트랙터의 견인력 추정)

  • Kim, Kyeong-Dae;Kim, Ji-Tae;Ahn, Da-Vin;Park, Jung-Ho;Cho, Seung-Je;Park, Young-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.92-99
    • /
    • 2021
  • Agricultural tractors drive and operate both off-road and on-road. Tire-road interaction significantly affects the tractive performance of a tractor, which is difficult to predict numerically. Many empirical models have been developed to predict the tractive performance of tractors using the cone index, which can be measured through simple tests. However, a magic formula model that can determine the tractive performance without a cone index can be used instead of traditional empirical models as the cone index cannot be measured on asphalt roads. The aim of this study was to predict the tractive performance of a tractor using the magic formula tire model. The traction force of the tires on an asphalt road was measured using an agricultural tractor. The dynamic wheel load was calculated to derive the coefficients of the traction-slip curve using the measured static wheel load and drawbar pull of the tractor. Curve fitting was performed to fit the experimental data using the magic formula. The parameters of the magic formula tire model were well identified, and the model successfully determined the coefficient of traction of the tractor.

A Comparison of the Direct Shear Test and Shear Simulation Based on the Discrete Element Method (직접전단시험과 이산요소법에 기반한 전단 시뮬레이션과의 비교)

  • Jung, Sung-Heon;Sohn, Jeong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.86-91
    • /
    • 2020
  • An important factor of rough road modeling is analyzing the shear behavior properties of the rough road. These properties influence the drawbar pull of the tool when interacting with the soil used in agriculture. Furthermore, shear behavior properties are important because sinkage and shear stress are generated when wheels drive on rough roads. In this study, we performed a direct shear test to investigate the shear behavior properties of soils and compare with the direct shear simulation; shear force derived by the coupled analysis of discrete element method; and multi-body dynamics. Soil contact parameters were measured in a wheel and soil contact simulation followed by comparison of the simulated and experimentally measured shear force.

Prediction of Maneuverability and Efficiency for a Mobile Robot on Rough Terrain through the development of a Testbed for Analysis of Robot-terrain interaction (지형-로봇간의 상호작용 분석 장치의 개발을 통한 야지 주행 로봇의 기동성 및 효율성 예측)

  • Kim, Jayoung;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.2
    • /
    • pp.116-128
    • /
    • 2013
  • This paper focuses on development of a testbed for analysis of robot-terrain interaction on rough terrain and also, through one wheel driving experiments using this testbed, prediction of maximum velocity and acceleration of UGV. Firstly, from the review regarding previous researches for terrain modeling, the main variables for measurement are determined. A testbed is developed to measure main variables related to robot-terrain interaction. Experiments are performed on three kinds of rough terrains (grass, gravel, and sand) and traction-slip curves are obtained using the data of the drawbar pull and slip ratio. Traction-slip curves are used to predict driving performance of UGV on rough terrain. Maximum velocity and acceleration of UGVs are predicted by the simple kinematics and dynamics model of two kinds of 4-wheel mobile robots. And also, driving efficiency of UGVs is predicted to reduce energy consumption while traversing rough terrains.