• Title/Summary/Keyword: Drawbar

Search Result 46, Processing Time 0.022 seconds

Prdiction of Tractive Performance of Wheeled Vehicles on Soft Terrains (휠형차량의 연약지 견인성능 예측)

  • 박원엽;이규승
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.359-368
    • /
    • 2000
  • In this paper, mathematical model was developed for predicting the tractive performance of off-road wheeled vehicles operated on soft terrains. Based on the mathematical model, a computer simulation program(TPPMWV) was developed. The model takes into account main design parameters of wheeled vehicle, including radius and width of front and rear tire, weight of vehicle, wheelbase and driving type(4WD, 2WD). Soil characteristics, such as the peressure-sinkage and shearing characteristics and the response to repetitive loading and slip-sinkage effect, are also taken into consideration. The effectiveness of the developed model was verified by comparing the predicted drawbar pulls using TPPMWV with measured ones obtained by field tests for two different driving types of wheeled vehicle. As a results, the drawbar pulls predicted by the TPPMWV were well matched to the measured ones within the absolute errors of 3.916%(4WD) and 13.31%(2WD) for two different driving types, respectively.

  • PDF

A study on the Analysis of Drive Efficiency by Drawbar Pull Test in the Wheeled Vehicle (경인력시험을 통한 차륜차량의 구동효율에 관한 연구)

  • 양성모;강윤수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.34-46
    • /
    • 1987
  • The drive efficiency is investigated with drawbar pull test to provide the basic data in the gradability and acceleration of the wheeled vehicle. As a result, the drive efficiencies are determined from 4*2 drive : Direct gear 0.89 1st gear 0.81 Other gears 0.83-0.87 4*4 high drive : Direct gear 0.85 1st gear 0.77 Other gears 0.79-0.83 4*4 low drive : Direct gear 0.83 1st gear 0.75 Other gears 0.77-0.81

  • PDF

Prediction of Tractive Performance of Tracked Vehicles Using a Computer Simulation Model

  • Park, W.Y.;Chang, Y.C.;Lee, K.S.
    • Agricultural and Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.34-38
    • /
    • 2003
  • A mathematical model was developed for estimating the mechanical interrelation between characteristics of soil and main design factors of a tracked vehicle, and predicting the tractive performance of the tracked vehicle. Based on the mathematical model, a computer simulation program (TPPMTV) was developed in the study. The model considered the continuous change in tension for the whole track of a tracked vehicle, the analysis of shape and tension of the track segment between sprocket and first roadwheel, and the side thrust on both sides of grouser by the active earth pressure theory in predicting the tractive performance of a tracked vehicle. Also, the model contained not only sinkage depth of the track but the pressure distribution under the track in analyzing the side thrust. The effectiveness of the developed model was verified by performing the draw bar pull tests with a tracked vehicle reconstructed for test in loam soil with moisture content of 18.92%. The predicted drawbar pulls by the model were well matched to the measured ones. Such results implied that the model developed in the study could estimate the drawbar pulls well at various soil conditions, and would be very useful as a simulation tool for designing a tracked vehicle and predicting its tractive performance.

  • PDF

Development of Wheel-Terrain Interaction Device for Mobility Prediction of Off-road Vehicle (야지 차량의 기동성 예측을 위한 휠-토양 상호작용 시험장치 개발)

  • Oh, Hyunhwan;Kim, Gwanyoung;Kim, Jinseong;Shin, Yongjae;Lee, Kyu-Jin;Choi, Minsuk;Lee, Soo Jin
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.332-339
    • /
    • 2014
  • This paper presents on the development of wheel-terrain interaction device using low-priced sensors, which will be used to predict the drawbar pull and optimal slip of off-road vehicle in real time. The essential variables obtained in the device to predict the mobility of vehicles are determined based on semi-empirical model describing the wheel-terrain interaction. Using the developed device, the experiments about the wheel-terrain interaction were performed on the soil of the Jumunjin standard sand, which yielded dynamic weight, motor driving torque, drawbar pull, and sinkage with respect to wheel slip ratio. Finally, the repeatability of the measured data are verified through repeating the experiments three times on the same condition.

Off-road tractive performance of tracked vehicles and the effects of soil parameters (궤도차량의 야지기동성 평가와 토지특성의 영향)

  • 김진우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.76-84
    • /
    • 1991
  • The off-road tractive performance of tracked vehicles can be evaluated in terms of soil thrust, motion resistance and drawbar pull. The ability to predict accurately ground pressure distribution under track is of importance since the vehicle sinkage and motion resistance are closely related to it. While the formulation of the method for predicting ground pressure distribution follows closely in spirit the ideas outlined for the terrain with linear pressure- sinkage relation case by Garber and Wong, the analysis of various terrain stiffness is magnified by numerical implementation procedure. The effects of soil parameters on tractive forces can be introduced through the terrain-track interaction such as pressure-sinkage and shearing characteristics. It is illustrated by determining the drawber pull-slip relation and corresponding ground pressure distribution for the terrains typically chosen and by comparing the results with the conventional ones based on normal ground pressure. The factorial experiment method is finally adopted for checking the sensitivity of the values of soil parameters on the drawbar pull.

  • PDF

Tractive Performance Comparison Between Wheel-Drive Tractors and A Rubber Belt Crawler Tractor

  • Nikoli, I.R.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1196-1201
    • /
    • 1993
  • Test of Caterpillar Challenger 65 tractor which has rubber tracks, and articulated four wheel drive tractor with dual wheels and a mechanical front wheel drive tractor were conducted on an unplowed and plouwed wheat stubble field. The following parameters were analyzed : tractive efficiency (ηv), net tractive coefficient ($\phi$n), slip ($\sigma$) , drawbar pull(Fv), drawbar power (Pv) and forward velocity(v). The maximum net tractive coefficient was established at the tractive efficiency of 0.60 on the unplowed wheat stubble field : for the Challenger 65 tractor 0.855 ; 4WD 0.624 and MFWD 0.534 and on the plowed wheat stubble field with the tractive efficiency of 0.40 for the Challenger 65 tractor 0.82 : 4WD 0.57 and for tractor MFWD 0.48.

  • PDF

Experimental Technique for Trafficability on Soft Benthic Terrain (II) : Straight-line Motion Test of Tracked Vehicle (해저 연약지반 주행성능 실험기법 연구 (II) : 직진주행성능시험)

  • Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo;Lee, Tae-Hee
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.116-120
    • /
    • 2003
  • To study the trafficability on soft and cohesive benthic terrain, a tracked vehicle model($670mm(L){\times}750mm(B_c)$) is designed and tested. The pitch and chevron angle of grouser, weight and center of gravity of vehicle, and drawbar pull force are chosen as experimental variables. Slip, sinkage and inclined angle of vehicle are picked as performance values. Strength of soil is considered as noise factor. A preliminary straight-line motion test is performed. Then, DOE(Design of Experiment) is discussed for further research.

  • PDF

Performance Trend of Korean-made Agricultural Tractors (국산 트랙터의 성능 변화)

  • Kim K. U.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6 s.113
    • /
    • pp.321-326
    • /
    • 2005
  • Tractor performance was analyzed using the data from 226 Korean-made and 107 imported tractors tested at the National Institute of Agricultural Engineering for the 25-year period from 1980 through 2004. The performance analysis included the specific volumetric fuel consumption (svfc), power per unit weight and traction coefficient evaluated from the viewpoint of PTO power level. No significant performance improvement has been made for the Korean-made tractors over the last 25 years. The average svfc for the maximum PTO power has increased by only $2.1\%$ from 1980 to 2004, resulting in 2.86 kW${\cdot}$h/L in 2004. The average maximum PTO and drawbar power per unit weight of ballasted tractors were 1.38 and 1.19 kW/kN in 2000-2004, indicating $14.0\%$ and $5.9\%$ decreases respectively from 1980 to 2004. The traction coefficient has increased by $23.1\%$ over the 25 years, resulting in 0.68 in the 2000-2004 period. Poor performance improvement was also observed from the imported tractors. In the 2000-2004 period, average svfc for the maximum PTO power, PTO power per unit ballasted weight, drawbar power per unit ballasted weight and traction coefficient of the imported tractors were respectively 3.0 kW${\cdot}$h/L, 1.34 kW/kN, 1.13 kW/kN and 0.68. PTO and drawbar power per unit weight were lower in imported tractors than the Korean-made tractors. Comparing the test results with those of tractors less than 37 kW tested at the Nebraska Tractor Test Laboratory from 1981 to 2002, the Korean-made tractors have exhibited better performance in terms of power per unit weight. However, poor performance in the svfc and traction coefficient was observed. The average svfc and traction coefficient of the Korean-made tractors were respectively $86.4\%$ and $83.7\%$ of the tractors tested at the NTTL over the same period.

Drawbar Pull Estimation in Agricultural Tractor Tires on Asphalt Road Surface using Magic Formula (Magic Formula를 이용한 아스팔트 노면에서의 농업용 트랙터의 견인력 추정)

  • Kim, Kyeong-Dae;Kim, Ji-Tae;Ahn, Da-Vin;Park, Jung-Ho;Cho, Seung-Je;Park, Young-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.92-99
    • /
    • 2021
  • Agricultural tractors drive and operate both off-road and on-road. Tire-road interaction significantly affects the tractive performance of a tractor, which is difficult to predict numerically. Many empirical models have been developed to predict the tractive performance of tractors using the cone index, which can be measured through simple tests. However, a magic formula model that can determine the tractive performance without a cone index can be used instead of traditional empirical models as the cone index cannot be measured on asphalt roads. The aim of this study was to predict the tractive performance of a tractor using the magic formula tire model. The traction force of the tires on an asphalt road was measured using an agricultural tractor. The dynamic wheel load was calculated to derive the coefficients of the traction-slip curve using the measured static wheel load and drawbar pull of the tractor. Curve fitting was performed to fit the experimental data using the magic formula. The parameters of the magic formula tire model were well identified, and the model successfully determined the coefficient of traction of the tractor.

A Study on the Decrease of the Unclamping time using Hydraulic Circuit (유압 회로를 이용한 초고속 스핀들의 언클램핑(unclamping) 시간 저감 방안 연구)

  • Chung W.J.;Lee C.M.;Cho Y.D.;Whang Y.K.;Chung D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1745-1748
    • /
    • 2005
  • According to the demand of the high productivity, the interest of manufacturing skills is growing in industrial society. Especially the high speed spindle in machining center becomes important these days. The exchange time of the tool in machining center usually calls T-T(tool to tool) time. Detailly explaning, It is influenced by the unclamping time. Affecting factors of the unclamping time are various(the hydraulic system, drawbar mass, a flow meter, disc spring, a piston diameter, pipe diameters, and so on). In this study, we could find factors that decrease the unclamping time and verify it for softwares.(AMESim $4.0^{(R)}$ & visual Nastran $4D^{(R)}$)

  • PDF