• Title/Summary/Keyword: Draw-bead

Search Result 50, Processing Time 0.021 seconds

Efficient modeling of die-face shapes for stamping automobile outer panels (차체 판넬의 가공 제작을 위한 금형형상의 효율적 모델링)

  • 박종천;이건우;전기찬
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.96-110
    • /
    • 1993
  • A procedure has been developed so that a die-face for stamping automobile outer panels can be design and modelled efficiently. The procedure is composed of four parts each of which corresponds to modeling major components of a die-face, i.e. tipped product, blankholder, draw beads, and step draw. The modeling techniques developed specifically for die-face design enable a designer to generate the shape of a die-face quickly with the minimum input, and the resulting models can be used in FEM analysis and NC tool path generation. This will lead to the reductions in lead time and manhours required for the design and manufacture of the stamping dies.

  • PDF

Design of the Bead Force and Die Shape in Sheet Metal Forming Processes Using a Rigid-plastic Finite Element Method and Response Surface Methodology (강소성 유한요소법과 반응표면분석법을 이용한 박판성헝 공정에서의 비드력 및 다이형상의 설계)

  • Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.284-292
    • /
    • 2000
  • Optimization of the process parameters is carried out for process design in sheet metal forming processes. The scheme incorporates with a rigid-plastic finite element method for the deformation analysis and response surface methodology for the optimum searching of process parameters. The algorithm developed is applied to design of the draw bead force and the die radius in deep drawing processes of rectangular cups. The present algorithm shows the capability of designing process parameters which enable the prevention of the weak part of fracture during processes.

  • PDF

A study on the drawing characteristics of circular drawbead by the Finite Element Method (유한요소법에 의한 원형드로오비드의 인출특성에 관한 연구)

  • 신양호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.26-35
    • /
    • 1997
  • In this study, the drawing characteristics of circular drawbead are examined with the plane strain elastic-plastic FE Method. Both the clamping load and the drawing load investigated by varying the process variables such as drawbead radius, closing depth and friction condition. The effective strain induced by the draw bead is also investigated. In order to verify the results, the computed results are compared with the existing experimental results. It has been found that both the clamping load and drawing loads are related with the geometry of the bead rather than the lubrication conditions.

  • PDF

Stress-Based Springback Reduction of an AHSS Front Side Member (고강도강 프런트 사이드멤버의 음력분포 최적화를 통한 스프링백 저감)

  • Song, J.H.;Kim, S.H.;Huh, H.;Park, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.61-67
    • /
    • 2006
  • Optimization is carried out to determine process parameters which reduce the amount of springback and improve shape accuracy of a deep drawn product in sheet metal forming process. The study uses the amount of stress deviation along the thickness direction in the deep drawn product as an indicator of springback instead of springback simulation. The scheme incorporates with an explicit elasto-plastic finite element method for calculation of the final shape and the stress deviation. The optimization method adopts the response surface method in order to seek for the optimum condition of the draw-bead force. The present scheme is applied to the design of draw-bead force in a front side member formed with advanced high strength steel (AHSS) sheets of DP60. Results show that design of process parameter is well performed to decrease the stress deviation through the thickness and to reduce the amount of springback. The present analysis provides a guideline in a design stage for controlling the springback based on the finite element simulation of the complicated parts.

  • PDF

Finite element analysis of spring back caused by frictional force in area of flange in press bending process (프레스 벤딩 공정에서 플랜지부의 마찰력이 스프링백에 미치는 영향에 대한 해석적 고찰)

  • Yun, Jae-Woong;Oh, Seung-Ho;Choi, Kye-Kwang;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.63-69
    • /
    • 2021
  • Springback is an essential task to be solved in order to make high-precision products in sheet metal forming. In this study, materials with four different elastic regions were used. For the forming analysis, the change of springback caused by the frictional force generated in the flange part during hat shape forming was considered by using the AutoForm analysis program. Factors affecting frictional force were blank holder force, friction coefficient, bead R and bead height. As a result of the forming analysis, the springback increases as the material with a larger elastic region increases. In addition, as the frictional force of the flange part increased, the tensile force in the forming direction increased and the springback decreased. In particular, the blank holder force and friction coefficient had a great effect on springback in mild materials (DC04, Al6016), and the bead effectively affects all materials. Through this study, it was considered that the springback decreased as the material with a smaller elastic region and the tensile force in the forming direction increased.

Design Modification of the Stamping Die for the Improvement of Surface Quality of the Front End Module Carrier Upper Member (프런트 엔드 모듈 캐리어 어퍼 부재의 면품질 개선을 위한 금형설계 변경)

  • Kim S. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.2 s.74
    • /
    • pp.153-159
    • /
    • 2005
  • Design modification of the stamping die for the upper member of a front end module carrier is carried out in order to improve the surface quality of the final product. The small inferiority induced by wrinkling near the wall of the upper member has been inspected after the draw-forming process. The finite element analysis is pursued with the whole geometry in order to consider the complicated shape. The simulation shows that the excess metal is developed by the irregular contact of the blank the tool and it remains after the final stroke. This paper proposes two guidelines for the modification. One is to add the draw-bead near the critical region in order to increase the draw-in force. The other is to modify the tool shape such as the forming shape at the wall in order to absorb the excess metal before the final stroke. Simulation results show that the proposed guidelines both guarantee the improved surface quality.

Simulation and Field Try-out of Auto Panel Stamping Processes (자동차 패널 전 스탬핑 공정의 시뮬레이션과 현장 트라이 아웃)

  • Chung K. W.;Lee J. M.;Keum Y. T.;Lee S. Y.;Ahn I. H.;Hwang E. J.;Park J. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.164-167
    • /
    • 2004
  • The draw, trim, flange, and cam forming processes of automotive fender panel are simulated, focused on the springbacks. Simulation results are compared with field try-out. In order to compensate the differences between simulation and try-out, the draw bead shapes in the simulation are modified and the accuracy of the simulation is improved by comparing blank draw-in amounts. The spring-backs after formings are also found in the simulation. Finally, the simulation procedures for analyzing the springbacks in all stamping processes are established.

  • PDF

Improvement of Feeling Quality of a Stamped Member for an Autobody with the Finite Element Analysis (유한요소해석을 이용한 자동차용 박판부재의 감성품질 개선)

  • Kim S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.252-255
    • /
    • 2004
  • Design modification of the stamping die for the upper member of a front end module carrier is carried out in order to improve the feeling qualify of the final product. The small inferiority induced by wrinkling near the wall of the FEM upper member has been inspected after the draw-forming process. The finite element simulation shows that the excess metal is developed by the irregular contact of the blank the tool and it remains after the final stroke. This paper proposes two guidelines for the modification: one is to add the draw-bead; and the other is to modify the tool shape such as the forming shape at the wall. Simulation results show that the proposed guidelines both guarantee the improved feeling quality.

  • PDF

A Study on the 2-Layered Sheet Metal Forming Analysis and Applications in Automotive Exhaust Component (2-Layer 블랭크를 적용한 자동차 배기 부품의 박판 성형 해석 및 적용)

  • Roh G. T.;Jeong W. S.;Moon M. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.318-321
    • /
    • 2005
  • The shell part is made of 2-layered blank because of functional requirements. To investigate the draw formability in this kind of part, the 2-layered sheet metal forming analysis process should be stipulated. First of all, treatment of contact with each blank must be considered to prevent the penetration on the each blank. Subsequently, applying the draw bead force is considered carefully because application of drawbead force for analysis is different with equivalent drawbead force. Formability as like crack, neck and wrinkles is estimated by FLD(Forming Limit Diagram) and thinning. A feasibility of the 2-layered sheet metal forming analysis process study is verified compare 2-layered sheet metal forming analysis with experimental results.

  • PDF