• Title/Summary/Keyword: Drake Passage

Search Result 18, Processing Time 0.026 seconds

Distribution of Nutrients and Phytoplankton Biomass in the Area Around the South Shetland Islands, Antarctica (남극 남쉐틀랜드군도 주변 해역의 영양염과 식물플랑크톤 생물량 분포)

  • Kim, Dong-Seon;Kang, Sung-Ho;Kim, Dong-Yup;Lee, Youn-Ho;Kang, Young-Chul
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.77-95
    • /
    • 2001
  • Temperature, salinity, nutrients, chlorophyll-a, and primary production were measured within the upper 200 m water column in the area around the South Shetland Islands in January, 2000. Surface temperature was relatively high in the Drake Passage north of the South Shetland Islands and low in the northeastern area of the Antarctic Peninsula. In contrast, surface salinity was low in the Drake Passage and increased toward the Antarctic Peninsula, reaching the maximum value in the northeastern area of the Antarctic Peninsula. Surface nutrients were low in the Drake Passage and high in the area near the South Shetland Islands. Surface chlorophyll-a was also low in the Drake Passage and near the Antarctic Peninsula and high in the area of the northern King George Island. The study area could be classified as four geographical zones based on the characteristic shape of the T/S diagrams;the Drake Passage, the Bransfield Strait, the mixed zone, and the Weddell Sea. Each geographical zone showed apparently different physical, chemical, and biological characteristics. Phytoplankton biomass was relatively low in the Drake Passage and the Weddell Sea and high in the Bransfield Strait and the mixed zone. The low phytoplankton biomass in the Weddell Sea could be explained by the low water temperature and deep surface mixing down to 200 m. The high grazing pressure and low availability of iron could be responsible for the low phytoplankton biomass in the Drake Passage.

  • PDF

Trophic Role of Heterotrophic Nano- and Microplankton in the Pelagic Microbial Food Web of Drake Passage in the Southern Ocean during Austral Summer (남극 하계 드레이크 해협의 미세생물 먹이망에서 종속영양 미소형 및 소형플랑크톤의 역할)

  • Yang, Eun-Jin;Choi, Joong-Ki;Hyun, Jung-Ho
    • Ocean and Polar Research
    • /
    • v.33 no.4
    • /
    • pp.457-472
    • /
    • 2011
  • To elucidate the trophic role of heterotrophic nano- and microplankton (HNMP), we investigated their biomass, community structure, and herbivory in three different water masses, namely, south of Polar Front (SPF), Polar Front Zone (PFZ), the Sub-Antarcitc Front (SAF) in the Drake Passage in the Southern Ocean, during the austral summer in 2002. We observed a spatial difference in the relative importance of the dominant HNMP community in these water masses. Ciliates accounted for 34.7% of the total biomass on an average in the SPF where the concentration of chlorophyll-a was low with the dominance of pico- and nanophytoplankton. Moreover, the importance of ciliates declined from the SPF to the SAF. In contrast, heterotrophic dinoflagellates (HDFs) were the most dominant grazers in the PFZ where the concentration of chlorophyll-a was high with the dominance of net phytoplankton. HNMP biomass ranged from 321.9 to 751.4 $mgCm^{-2}$ and was highest in the PFZ and lowest in the SPF. This result implies that the spatial dynamic of HNMP biomass and community was significantly influenced by the composition and concentration of phytoplankton as a food source. On an average, 75.6%, 94.5%, and 78.9% of the phytoplankton production were consumed by HNMP in the SPF, PFZ, and SAF, respectively. The proportion of phytoplankton grazed by HNMP was largely determined by the composition and biomass of HNMP, as well as the composition of phytoplankton. However, the herbivory of HNMP was one of the most important loss processes affecting the biomass and composition of phytoplankton particularly in the PFZ. Our results suggest that the bulk of the photosynthetically fixed carbon was likely reprocessed by HNMP rather than contributing to the vertical flux in Drake Passage during the austral summer in 2002.

Variation of Nitrate Concentrations and δ15N Values of Seawater in the Drake Passage, Antarctic Ocean (남극해 드레이크해협 해수의 질산염 농도와 질소동위원소 값의 변화)

  • Jang, Yang-Hee;Khim, Boo-Keun;Shin, Hyoung-Chul;Sigman, Daniel M.;Wang, Yi;Hong, Chang-Su
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.407-418
    • /
    • 2008
  • Seawater samples were collected at discrete depths from five stations across the polar front in the Drake Passage (Antarctic Ocean) by the $20^{th}$ Korea Antarctic Research Program in December, 2006. Nitrate concentrations of seawater increase with depth within the photic zone above the depth of Upper Circumpolar Deep Water (UCDW). In contrast, ${\delta}^{15}N$ values of seawater nitrate decrease with depth, showing a mirror image to the nitrate variation. Such a distinct vertical variation is mainly attributed to the degree of nitrate assimilation by phytoplankton as well as organic matter degradation of sinking particles within the surface layer. The preferential $^{14}{NO_3}^-$ assimilation by the phytoplankton causes $^{15}{NO_3}^-$ concentration to become high in a closedsystem surface-water environment during the primary production, whereas more $^{14}{NO_3}^-$ is added to the seawater during the degradation of sinking organic particles. The water-mass mixing seems to play an important role in the alteration of ${\delta}^{15}N$ values in the deep layer below the UCDW. Across the polar front, nitrate concentrations of surface seawater decrease and corresponding ${\delta}^{15}N$ values increase northward, which is likely due to the degree of nitrate utilization during the primary production. Based on the Rayleigh model, the calculated ${\varepsilon}$ (isotope effect of nitrate uptake) values between 4.0%o and 5.8%o were validated by the previously reported data, although the preformed ${\delta}^{15}{{NO_3}^-}_{initial}$ value of UCDW is important in the calculation of ${\varepsilon}$ values.

Quaternary Diatom Assemblages from Sediment Core GC 98-06 in the Southern Drake Passage, Antarctica (드레이크 해협 남부 코어퇴적물에서 산출된 제 4기 규조 화석 연구)

  • Lee, Jong-Deock;Yoon, Ho-Il;Yun, Hye-su;Kim, Hyo-Jeong;Bak, Young-Suk
    • Journal of the Korean earth science society
    • /
    • v.23 no.5
    • /
    • pp.442-453
    • /
    • 2002
  • A total of 64 species belonging to 23 genera of diatom fossils are identified from the Core GC 98-06 in the southern Drake Passage, Antarctica. The diatom assemblages are dominated by Actinocyclus actinochilus, Coscinodiscus asteromphalus, Eucampia antarctica, Fragilariopsis kerguelensis, Thalassiosira lentiginosa, T. ritscheri and T. anguste-lineata, which are about 73% of the assemblage. Open water species are more abundant than sea ice species in the diatom assemblages of the core. Fragilariopsis. kerguelensis and Thalassiosira lentiginosa are valuable indicators of the habitats. Especially, F. kerguelensis represent the influence of waters from the Antarctic Circumpolar Current. Sea ice taxa represents the influence of cold waters from Bransfield Strait Water and melt water from the sea-ice at during warm periods. The reworked diatoms such as Denticulopsis dimopha (Miocene) and D. hustedtii (Pliocene) are occurred with Quaternary species (Actinocyclus actinochilus, Fragilariopsis kerguelensis, Thalassiosira lentiginosa, and T. glacilis). The presence of reworked diatoms indicates the transportation of the older diatoms into the Drake passage from the circumference sediments, due to strong bottom current activity of Antarctic circumpolar deep water.

Gravity-Geologic Prediction of Bathymetry in the Drake Passage, Antarctica (Gravity-Geologic Method를 이용한 남극 드레이크 해협의 해저지형 연구)

  • 김정우;도성재;윤순옥;남상헌;진영근
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.273-284
    • /
    • 2002
  • The Gravity-Geologic Method (GGM) was implemented for bathymetric determinations in the Drake Passage, Antarctica, using global marine Free-air Gravity Anomalies (FAGA) data sets by Sandwell and Smith (1997) and local echo sounding measurements. Of the 6548 bathymetric sounding measurements, two thirds of these points were used as control depths, while the remaining values were used as checkpoints. A density contrast of 9.0 gm/㎤ was selected based on the checkpoints predictions with changes in the density contrast assumed between the seawater and ocean bottom topographic mass. Control depths from the echo soundings were used to determine regional gravity components that were removed from FAGA to estimate the gravity effects of the bathymetry. These gravity effects were converted to bathymetry by inversion. In particular, a selective merging technique was developed to effectively combine the echo sounding depths with the GGM bathymetiy to enhance high frequency components along the shipborne sounding tracklines. For the rugged bathymetry of the research area, the GGM bathymetry shows correlation coefficients (CC) of 0.91, 0.92, and 0.85 with local shipborne sounding by KORDI, GEODAS, and a global ETOPO5 model, respectively. The enhanced GGM by selective merging shows imploved CCs of 0.948 and 0.954 with GEODAS and Smith & Sandwell (1997)'s predictions with RMS differences of 449.8 and 441.3 meters. The global marine FAGA data sets and other bathymetric models ensure that the GGM can be used in conjunction with shipborne bathymetry from echo sounding to extend the coverage into the unmapped regions, which should generate better results than simply gridding the sparse data or relying upon lower resolution global data sets such as ETOPO5.

Temporal variation of magma chemistry in association with extinction of spreading, the fossil Antarctic-Phoenix Ridge, Drake Passage, Antarctica

  • Choe, Won-Hie;Lee, Jong-Ik;Lee, Mi-Jung;Hur, Soon-Do;Jin, Young-Keun
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.136-141
    • /
    • 2005
  • The K Ar ages, whole rock geochemistry and Sr Nd Pb isotopes have been determined for the submarine basalts dredged from the P2 and P3 segments of the Antarctic-Phoenix Ridge (APR), Drake Passage, Antarctica, for better understanding on temporal variation of magma chemistry in association with extinction of seafloor spreading. The fossilized APR is distant from the known hot spots, and consists of older N-MORB prior to extinction of spreading and younger E-MORB after extinction. The older N-MORB (3.5-6.4 Ma) occur in the southeast flank of the P3 segment (PR3) and the younger E-MORB (1.4-3.1 Ma) comprise a huge seamount at the P3 segment (SPR) and a big volcanic edifice at the P2 segment (PR2). The N-type PR3 basalts have higher Mg#, K/Ba, and CaO/Al2O3 and lower Zr/Y, Sr, and Na8.0 with slight enrichment in incompatible elements and almost flat REE patterns. The E-type SPR and PR2 basalts are highly enriched in incompatible elements and LREE. The extinction of spreading occurring at 3.3 Ma seems to have led to a temporal magma oversupply with E-MORB signatures. Geochemical signatures such as Ba/TiO2, Ba/La, and Sm/La suggest heterogeneity of upper mantle and formation of E-MORB by higher contribution of enriched materials to mantle melting, compared to N-MORB environment. E-MORB magmas beneath the APR seem to have been produced by low melting degree (up to 1% or more) at deeper low-temperature regime, where metasomatized veins consisting of pyroxenites have preferentially participated in the melting. The occurrence of E-MORB at the APR is a good example to better understand what kinds of magmatism would occur in association with extinction of spreading.

  • PDF

Distribution of Alexandrium tamarense in Drake Passage and the Threat of Harmful Algal Blooms in the Antarctic Ocean

  • Ho, King-Chung;Kang, Sung-Ho,;Lam Ironside H.Y.;Ho, dgkiss I.John
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.625-631
    • /
    • 2003
  • While phytoplankton diversity and productivity in the Southern Ocean has been widely studied in recent years, most attention has been given to elucidating environmental factors that affect the dynamics of micro-plankton (mainly diatoms) and nano-plankton (mainly Phaeocystis antarctica). Only limited effects have been given to studying the occurrence and the potential risks associated with the blooming of dinoflagellates in the relevant waters. This study focused on the appearance and toxicological characteristics of a toxic dinoflagellate, Alexandrium tamarense, identified and isolated from the Drake Passage in a research cruise from November to December 2001 The appearance of A. tamarense in the Southern Ocean indicates the risk of a paralytic shellfish poisoning (PSP) outbreak there and is therefore of scientific concern. Results showed that while the overall quantity of A. tamarense in water samples from 30meters below the sea surface often comprised less than 0.1% of the total population of phytoplankton, the highest concentration of A. tamarense (20 cells $L^{-1}$) was recorded in the portion of the Southern Ocean between the southern end of South America and the Falkland Islands. Waters near the Polar Front contained the second highest concentrations of 10-15 cells $L^{-1}$. A. tamarense was however rarely found in waters near the southern side of the Polar Front, indicating that cold sea temperatures near the Antarctic ice does not favor the growth of this dinoflagellate. One strain of A. tamarense from this cruise was isolated and cultured for further study in the laboratory. Experiments showed that this strain of A. tamarense has a high tolerance to temperature variations and could survive at temperatures ranging from $5-26^{\circ}C$. This shows the cosmopolitan nature off. tamarense. With regard to the algal toxins produced, this strain of A. tamarense produced mainly C-2 toxins but very little saxitoxin and gonyailtoxin. The toxicological property of this A. tamarense strain coincided with a massive death of penguins in the Falkland Islands in December 2002 to January 2003.

Transoceanic Propagation of 2011 East Japan Earthquake Tsunami

  • Choi, Byung Ho;Kim, Kyeong Ok;Min, Byung Il;Pelinovsky, Efim
    • Ocean and Polar Research
    • /
    • v.36 no.3
    • /
    • pp.225-234
    • /
    • 2014
  • The 2011 Tohoku earthquake triggered extremely destructive tsunami waves which propagated over the Pacific Ocean, Atlantic Ocean through Drake Passage and Indian Ocean respectively. A total of 10 tide-gauge records collected from the UNESCO/IOC site were analyzed through a band-pass digital filtering device to examine the observed tsunami characteristics. The ray tracing method and finite-difference model with GEBCO 30 arc second bathymetry were also applied to compare the travel times of the Tohoku-originated tsunami, particularly at Rodrigues in the Indian Ocean and King Edward Point in the Atlantic Ocean with observation-based estimates. At both locations the finite-difference model produced the shortest arrival times, while the ray method produced the longest arrival times. Values of the travel time difference however appear to be within tolerable ranges, considering the propagation distance of the tsunami waves. The observed tsunami at Rodrigues, Mauritius in the west of the Madagascar was found to take a clockwise travel path around Australia and New Zealand, while the observed tsunami at King Edward Point in the southern Atlantic Ocean was found to traverse the Pacific Ocean and then passed into the Atlantic Ocean through the Drake Strait. The formation of icebergs captured by satellite images in Sulzberger in the Antarctica also supports the long-range propagation of the Tohoku-originated tsunami.