• Title/Summary/Keyword: Drainage watershed

Search Result 244, Processing Time 0.031 seconds

A Study on Hydrologic Analysis and Some Effects of Urbanization on Design Flow of Urban Storm Drainage Systems (1) (도시 하수도망의 수문학적인 평가와 설계확률유량의 점대화 성향에 관한 연구(제1보))

  • 강관원;서병하;윤용남
    • Water for future
    • /
    • v.14 no.4
    • /
    • pp.27-34
    • /
    • 1981
  • The design flow of the urban strom drainage systems has been assessed largely on a basis of empirical relations between rainfall and runoff, and the rational formula has been widely used for the cities in our country. In order to estimate it more accurately, the urban runoff simulation model based on the RRl method has been developed and applied to the sample basin in this study. The rainfall hyetograph of the design stromfor the design flow has been obtained by the determination of the total rainfall and the temporal distributions of that rainfall. The total rainfall has been assessed from the empirical formula of rainfall intensity and the temporal distribution of that rainfall determined on the basis of Huff's method from the historical rainfall data of the basin. The virtual inflow hydrograph to each inlet of the basin has been constructed by computing the series of discharges in each time increment, using design strom hyetograph and time-area diagram. The actual runoff hydrograph at the basin outlet has been computed from the virtual inflow hydrographs by developing a relations between discharge and storage for the watershed. The discharge data for verification of the simulated runoff hydrograph are not available in the sample basin and so the sensitivity analysis of the simulation model has not been possible. The peak discharge for the design of drainage systems has been estimated from the computed runoff hydrograph at the basin outlet and compared to thatl obtained form the rational formula.

  • PDF

Impact of Bidirectional Interaction between Sewer and Surface flow on 2011 Urban Flooding in Sadang stream watershed, Korea

  • Pakdimanivong, Mary;Kim, Yeonsu;Jung, Kwansue;Li, Heng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.397-397
    • /
    • 2015
  • The frequency of urban floods is recently increased as a consequence of climate change and haphazard development in urban area. To mitigate and prevent the flood damage, we generally utilized a numerical model to investigate the causes and risk of urban flood. Contrary to general flood inundation model simulating only the surface flow, the model needs to consider flow of the sewer network system like SWMM and ILLUDAS. However, this kind of model can not consider the interaction between the surface flow and drainage network. Therefore, we tried to evaluate the impact of bidirectional interaction between sewer and surface flow in urban flooding analysis based on simulations using the quasi-interacted model and the interacted model. As a general quasi-interacted model, SWMM5 and FLUMEN are utilized to analyze the flow of drainage network and simulate the inundation area, respectively. Then, FLO-2D is introduced to consider the interaction between the surface flow and sewer system. The two method applied to the biggest flood event occurred in July 2011 in Sadang area, South Korea. Based on the comparison with observation data, we confirmed that the model considering the interaction the sewer network and surface flow, showed a good agreement than the quasi-interacted model.

  • PDF

A Flood Damage Preventation and Permanent Restoration Method (수해 예방과 항구적인 복구 방안)

  • 구본충
    • Journal of the Korean Professional Engineers Association
    • /
    • v.32 no.6
    • /
    • pp.94-99
    • /
    • 1999
  • Recently, flood damage is rapidly increasing because of warming of globe, urbanization and industrialization. As a countermeasure to prevent these flood damages, it is quite required to extend the flood control ability by improving the objective rivers in the watershed and building more medium to large scale reserviors. Simultaneously repairing and rehabilitation of facilities through the safety diagnosis for reinforcement of the facilities should be continuously proceeded. Also extensive implementation of drainage improvement, establishment of prevention and refairing system against flood damage and raise of accuracy of weather forecasting should be proceeded.

  • PDF

Monitoring System and Irrigation Characteristics of Yi-dong Water District (농업용수 시험지구의 관측 및 물관리 특성)

  • Kim, Jin-Taek;Lee, Yong-Jig
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.13-16
    • /
    • 2002
  • Operation of experimental site on the rural water is necessary to research on the effective development and management of agricultural water. Hydrological data on the watershed runoff, reservoir storage, irrigation and drainage are measured and accumulated. For the monitoring system of the experimental site, four rainfall gauging stations and twenty-six water level gauging stations are established and operated. Analysis of measured data are processed for rainfall amount and intensity, water level and discharge.

  • PDF

A Rainfall-Runoff for Seom-Gang Experimental Watershed of Road Drainage (섬강 도로배수 시험유역의 강우-유출)

  • Lee, In-Ah;Choi, Hung-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1597-1601
    • /
    • 2007
  • 본 연구는 도로배수 유역 현황조사에 의해 유역의 적정 크기 등을 고려하여 산지유역인 상지대 섬강 시험유역 내에 도로배수 소유역을 선정하여 운영하였다. 2005년 5월부터 현재까지 수위관측소와 우량관측소를 설치하여 수위 및 우량자료를 수집하고, 홍수기뿐만 아니라 평 갈수기에도 주기적으로 유량 관측을 통해 수위-유량 곡선을 개발하였다. 도로배수유역의 강우-유출특성을 분석하기위하여 도달시간을 산정하였고, HEC-1 모형을 이용한 모의결과를 실측자료와 비교분석을 실시하여 모형의 사용성을 검토하였다.

  • PDF

Drainage Derangement and Revision by the Formation of Cheolwon-Pyeonggang Lava Plateau in Chugaryeong Rift Valley, Central Korea (추가령 열곡의 철원-평강 용암대지 형성에 따른 하계망 혼란과 재편성)

  • Lee Min-Boo;Lee Gwang-Ryul;Kim Nam-Shin
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.6 s.105
    • /
    • pp.833-844
    • /
    • 2004
  • In Chugaryeong rift valley, lava plateau formation by the fissure eruption had vanished original landforms and effected on drainage derangement and revision. 4 rivers including Namdae-cheon, Bukhan-gang, Imjin-gang and Hantan-gang watersheds have shared Cheolwon-Pyeonggang lava plateau, that is, ownerless watershed. Main agency of the dividing process are central-eruption volcanic peaks such as Orisan(453m) and 680 Peak. Especially, Orisan has played the role of divide point for 4 watersheds. In the lower-relief plateau zone, complex drainage system have caused continually river capture between neighboring watersheds. In more elevated range slope, river capture have proceeded to headward erosion. Hydrogeomorphologically, lava-filled valley has initiated decrease of the original size of flood plain, maybe, causing higher capability of inundation by heavy rains, and then more active dissection of lava plateau layer.

Connection of Hydrologic and Hydraulic Models for Flood Forecasting in a Large Urban Watershed (대규모 도시유역의 홍수예보를 위한 수리.수문 모형의 연계)

  • Yoon, Seong-Sim;Choi, Chul-Kwan;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.9
    • /
    • pp.929-941
    • /
    • 2008
  • The objectives of this study are to propose a system for combined use of a hydrologic and a hydraulic model for urban flood forecast model and to evaluate the system on the $300km^2$ Jungrang urban watershed area, which is relatively large area as an urban watershed and consequently composed of very complex drainage pipes and streams with different land uses. In this study, SWMM for hydrologic model and HEC-RAS for hydraulic model are used and the study area is divided into 25 subbasins. The SWMM model is used for sewer drainage analysis within each subbasin, while HEC-RAS for unstready flow analysis in the channel streams. Also, this study develops a GUI system composed of mean areal precipitation input component, hydrologic runoff analysis component, stream channel routing component, and graphical representation of model output. The proposed system was calibrated for the model parameters and verified for the model applicability by using the observation data. The correlation coefficients between simulated and observed flows at the 2 important locations were ranged on 0.83-0.98, while the coefficients of model efficiency on 0.60-0.92 for the verification periods. This study also provided the possibilities of manhole overflows and channel bank inundation through the calculated water profile of longitudinal and channel sections, respectively. It can be concluded that the proposed system can be used as a surface runoff and channel routing models for urban flood forecast over the large watershed area.

Analysis of Applicability of the Detention in Trunk Sewer for Reducing Urban Inundation (도시 내수침수 저감을 위한 간선저류지 적용성 분석)

  • Lee, Sung Ho;Kim, Jung Soo;Kim, Seo Jun
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.1
    • /
    • pp.44-53
    • /
    • 2021
  • The flood prevention capacity of drainage facilities in urban areas has weakened because of the increase in impervious surface areas downtown owing to rapid urbanization as well as localized heavy rains caused by climate change. Detention can be installed in trunk sewers and linked to existing drainage facilities for the efficient drainage of runoff in various urban areas with increasing stormwater discharge and changing runoff patterns. In this study, the concept of detention in trunk sewers, which are storage facilities linked to existing sewer pipes, was applied. By selecting a virtual watershed with a different watershed shape, the relationship between the characteristic factors of detention in the trunk sewer and the design parameters was analyzed. The effect of reducing stormwater runoff according to the installation location and capacity of the reservoir was examined. The relationship between the installation location and the capacity of the detention trunk sewer in the Dowon district of the city of Yeosu, South Korea was verified. The effects of the existing water runoff reduction facility and the detention trunk sewer were also compared and analyzed. As a result of analyzing the effects of reducing internal inundation, it was found that the inundation area decreased by approximately 66.5% depending on the installation location of the detention trunk sewer. The detention trunk sewer proposed in this paper could effectively reduce internal inundation in urban areas.