• Title/Summary/Keyword: Drainage depth

Search Result 283, Processing Time 0.025 seconds

Study on the effects of crop-yields under subsurface drainage system in the water-logging paddy fields (저수지에 있어서 암거배수 방법이 작물수량에 미치는 효과에 관한 시험연구)

  • 서승덕;김조웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.3
    • /
    • pp.4449-4461
    • /
    • 1977
  • Subsurface Drinage Problems arise from many causes. Flatland tends to be poorly drained, particularly where the subsoil permeability is low. There are many wet areas, however, where there is no evident connection between the area of seepage, or a high water table, and the topography of the site. High water tables may occur where the soil is either slowly or rapidly permeable, where the climate is either humid or arid, and where the land is either sloping or flat. This study is to bring light on subjects relating to increasing yield of crop and possibility of double crops a year in water logging paddy fields. Obtained results are briefly summarized as follows: 1. Effect of crop-yield in the plot A resulted 20.2 percent higher than the ordinary plot with yield of brown rice. 2. Possibility of double-crops a year is investigated. Effect of the barley production of the test plot resulted 168.2 percent higher than the other uplands near test plot with the yield of 1977 production and it is 3.8 percent higher compare with the yearly yields. 3. Decreasing depth of water level was measured 23.9mm per day and 14.3mm per day at the test plot and ordinary plot respectively and the amounts of subsurface drainage measured 30mm to 35mm per day. It is required that the relief well should be controled carefully and adequately. 4. Mean depth of ground water levl was measured 0.4∼0.5m regardless the width of corrugated pipe. It is significantly lowere than the ordinary plot(0.15∼0.20m) 5. The ground temperature of the test plot is higher 1 degree of centigarade or more than the ordinary plot and soil moisture content of the ordinary plot is higher 12.4∼27.8 percent than the plot reversely. There should be a relationship between rising of ground temperature and soil moisture.

  • PDF

Analysis on Inundation Characteristics for Flood Impact Forecasting in Gangnam Drainage Basin (강남지역 홍수영향예보를 위한 침수특성 분석)

  • Lee, Byong-Ju
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.189-197
    • /
    • 2017
  • Progressing from weather forecasts and warnings to multi-hazard impact-based forecast and warning services represents a paradigm shift in service delivery. Urban flooding is a typical meteorological disaster. This study proposes support plan for urban flooding impact-based forecast by providing inundation risk matrix. To achieve this goal, we first configured storm sewer management model (SWMM) to analyze 1D pipe networks and then grid based inundation analysis model (GIAM) to analyze 2D inundation depth over the Gangnam drainage area with $7.4km^2$. The accuracy of the simulated inundation results for heavy rainfall in 2010 and 2011 are 0.61 and 0.57 in POD index, respectively. 20 inundation scenarios responding on rainfall scenarios with 10~200 mm interval are produced for 60 and 120 minutes of rainfall duration. When the inundation damage thresholds are defined as pre-occurrence stage, occurrence stage to $0.01km^2$, 0.01 to $0.1km^2$, and $0.1km^2$ or more in area with a depth of 0.5 m or more, rainfall thresholds responding on each inundation damage threshold results in: 0 to 20 mm, 20 to 50 mm, 50 to 80 mm, and 80 mm or more in the rainfall duration 60 minutes and 0 to 30 mm, 30 to 70 mm, 70 to 110 mm, and 110 mm or more in the rainfall duration 120 minutes. Rainfall thresholds as a trigger of urban inundation damage can be used to form an inundation risk matrix. It is expected to be used for urban flood impact forecasting.

Hydraulic Design of Culvert Size (암거 규격의 수리 설계)

  • Yoo, Dong-Hoon;Kim, Jong-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.3
    • /
    • pp.275-282
    • /
    • 2010
  • The purpose of culvert design is to determine optimum size for a safe drainage of flood discharge. The present method of culvert design in Korea is generally carried out by using "Road Drainage Design" of Korea Expressway Corporation (1991), which is based on the manual of Federal Highway Association (FHWA) of USA. However, this method may result in subjective error because of using graphs and the usage of nomograph can be a major obstacle for computer modelling. Some errors found in the previous works of culvert design are corrected, and a new logic has been developed for a simple determination of culvert size in this study. FHWA (1985) presents a nomograph to determine the critical water depth and the velocity head for a circular pipe, but in this study simple explicit equations have been developed to determine both respectively.

Establishment of Soil Suitability for Korean Black Raspberry by Soil Morphological and Physical Properties (토양의 형태 및 물리적 특성을 고려한 복분자 재배적지 기준설정)

  • Hyun, Byung-Keun;Cho, Hyun-Jun;Sonn, Yeon-Kyu;Park, Chan-Won;Chun, Hyen-Chung;Song, Kwan-Cheol;Moon, Yong-Hee;Noh, Dae-Cheol;Yun, Kwan-Hee;Kim, Myung-Sook;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.2
    • /
    • pp.92-98
    • /
    • 2013
  • The objective of this study was to establish the decision criteria of soil suitability for Korean Black raspberry using soil morphological and physical properties. The investigation was carried out in Gochang, Sunchang, Jeongeup, Pohang, and Hoengseong districts in Korea. The obtained results showed that factors related to the decision criteria of the soil suitability for Korean Black raspberry cultivation were soil texture, soil drainage class, land slope, and available soil depth. The criteria of the best suitability soil for Korean Black raspberry was valley/fan or hill geomorphology, well or moderately drainage class, B-slope(2-7%), coarse loamy soil texture family, less than <15% gravel contents, and available soil depth deeper than 100cm. The area criteria of soil suitability for Korean Black raspberry of Gochang was more than 50% including best and suitable areas.

Analysis of Isochrone Effect of Clayey Soils using Numerical Analysis (수치해석을 이용한 점성토 지반의 아이소크론 영향 분석)

  • Lee, Yun-Sic;Lee, Jong-Ho;Lee, Kang-Il
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.1
    • /
    • pp.84-97
    • /
    • 2019
  • Purpose: The consolidation settlement of soft ground is dependent on the distribution of pore water pressure which is also affected by hydraulic conductivities (boundary condition) of layers, thickness of clayey soil layer and surcharge. Results: However, the current consolidation analyses are mostly based on Terzaghi's consolidation theory that assumes the initial pore water pressure ratio with depth to be constant. In this study, numerical analysis are carried out to investigate the variation of pore water pressure dissipation with depth and thickness of clayey soil layer, time, surcharge as well as drainage conditions. Conclusion: Comparative study with Terzaghi's consolidation theory is also conducted. The result shows that Terzaghi's consolidation theory should be used with caution unless it is ideally corresponded to the isochrone.

Classification and Spatial Variability Assessment of Selected Soil Properties along a Toposequence of an Agricultural Landscape in Nigeria

  • Fawole Olakunle Ayofe;Ojetade Julius Olayinka;Muda Sikiru Adekoya;Amusan Alani Adeagbo
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.3
    • /
    • pp.180-194
    • /
    • 2023
  • This study characterize, classify and evaluates the function of topography on spatial variability of some selected soil properties to assist in designing land management that support uniform agricultural production. The study site, an agricultural land, was part of the derived savanna zone in southwest Nigeria. Four soil profile pits each were established along two delineated toposequence and described following the FAO/UNESCO guidelines. Samples were collected from the identified genetic horizons. Properties of four soil series developed on different positions of the two delineated Toposequence viz upper, middle, lower slopes and valley bottom positions respectively were studied. The soil samples were analysed for selected physical and chemical properties and data generated were subjected to descriptive and inferential statistics. The results showed that soil colour, depth and texture varied in response to changes in slope position and drainage condition. The sand content ranged from 61 to 90% while the bulk density ranged between 1.06 g cm-3 to 1.68 g cm-3. The soils were neutral to very strongly acid with low total exchangeable bases. Available phosphorus value were low while the extractable micronutrient concentration varied from low to medium. Soils of Asejire and Iwo series mapped in the study area were classified as Typic isohyperthermic paleustult, Apomu series as Plinthic isohyperthermic paleustult and Jago series as Aquic psamment (USDA Soil Taxonomy). These soils were correlated as Lixisol, Plinthic Lixisol and Fluvisol (World Reference Based), respectively. Major agronomic constraints of the soils associations mapped in the study area were nutrient availability, nutrient retention, slope, drainage, texture, high bulk density and shallow depth. The study concluded that the soils were not homogenous, shows moderate spatial variation across the slope, had varying potentials for sustainable agricultural practices, and thus, the agronomic constraints should be carefully addressed and managed for precision agriculture.

Studies on t Sediment Deposit and Storage Capacity of the Honam Province (호남지방의 저수지의 매몰상황과 저수량에 관한 조사연구)

  • 이창구
    • Journal of the Korean Professional Engineers Association
    • /
    • v.3 no.10
    • /
    • pp.7-17
    • /
    • 1970
  • Fourteen reservoirs maintained by the local land improvement associations in the province of Chullabuk-Do and 20 reservoirs maintained by those in the province of Chullanam-Do, were surveyed in connection with a correction between storage capacity and sediment deposit. In addition to this survey, 3347 of small scale reservoirs, that lie scattered around in the above mentioned two provinces were investigated by using existing records pertaining to storage capacity in the office of City and Country, respectively. According to this inrestigation. the following conclusions are derived. 1. A sediment deposition rate is high, being about 10.63m$^3$/ha of drainage area, and resulting in the average decrease of storage capacity by 27.5%. This high rate of deposition could be mainly attributed to the severe denudation of forests due to disorderly cuttings of trees. Especially, in small scale reservoirs, an original average design storage depth of 197mm in irrigation water depth is decreased to about 140mm. 2. An average unit storage depth of 325.6mm as the time of initial construction is decreased to 226mm at present. This phenomena causes a greater shortage of gation water, since it was assumed that original storage quantity itself was already in short.

  • PDF

A Case Study on the Application of Gravel Pile in Soft Ground (Gravel Pile에 의한 연약지반 개량 시험시공 사례연구)

  • 천병식;고용일;여유현;김백영;최현석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.223-230
    • /
    • 2000
  • Sand drain as a vertical drainage is widely used in soft ground improvement. Recently, sand, the principal source of sand drain, is running out. The in-situ tests were carried out to utilize gravel as a substitute for sand. In-situ tests area was divided into two areas by material used. One is Sand Drain(SD) and Sand Compaction Pile(SCP) area, the other is Gravel Drain(GD) and Gravel Compaction Pile(GCP) area. Both areas were monitored to obtain the information on settlement, pore water pressure and bearing capacity by measuring instruments for stage loading caused by embankment. The results of measurements were analyzed, The clogging effect was checked at various depth in gravel column after the test. According to the test results, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel pile explains the result. The clogging effect was not found in gravel column. It is assumed that gravel is relatively acceptable as a drainage material. Gravel is considered to be a better material than sand for bearing capacity, and it is found that bearing capacity is larger when gravel is used as a gravel compaction pile than as a gravel drain.

  • PDF

Containment Failures of Oil Restricted by Vertical Plates in Current (유벽에 갇힌 기름층의 조류중 손실에 관한 연구)

  • Song Museok;Hyun Beom-Soo;Suh Jung-Chun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.2
    • /
    • pp.40-51
    • /
    • 1998
  • The interaction of contained oil slicks with current was investigated with a two-dimensional experimental setup in the circulating water channel facility. A vertical plate was used to contain the oils against the currents and the evolution of the oil slick, mainly focusing on the water/oil interface, was examined with an aid of a laser sheet. Two different oils - soy bean oil and diesel oil - were studied with varying the current speed (10 cm/sec to 35 cm/sec), the barrier depth (4 cm and 8 cm) and the volume of oil (2 liter to 12 liter). Different types of the interface behavior were observed according to the conditions and their mechanism was discussed based basically on the dimensional analysis. The critical speeds of two types of oil loss mechanism (entrainment failure and drainage failure) were also examined.

  • PDF

Derivation of rainfall threshold for urban flood warning based on the dual drainage model simulation

  • Dao, Duc Anh;Kim, Dongkyun;Tran, Dang Hai Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.141-141
    • /
    • 2021
  • This study proposed an equation for Rainfall Threshold for Flood Warning (RTFW) for urban areas based on computer simulations. First, a coupled 1D-2D dual-drainage model was developed for nine watersheds in Seoul, Korea. Next, the model simulation was repeated for a total of 540 combinations of the synthetic rainfall events and watershed imperviousness (9 watersheds × 4 NRCS Curve Number (CN) values × 15 rainfall events). Then, the results of the 101 simulations with the critical flooded depth (0.25m-0.35m) were used to develop the equation that relates the value of RTFW to the rainfall event temporal variability (represented as coefficient of variation) and the watershed Curve Number. The results suggest that 1) the rainfall with greater temporal variability causes critical floods with less amount of total rainfall; and that 2) the greater imperviousness requires less rainfall to have critical floods. For validation, the proposed equation was applied for the flood warning system with two storm events occurred in 2010 and 2011 over 239 watersheds in Seoul. The results of the application showed high performance of the warning system in issuing the flood warning, with the hit, false and missed alarm rates at 68%, 32% and 7.4% respectively for the 2010 event and 49%, 51% and 10.7% for the event in 2011.

  • PDF