• Title/Summary/Keyword: Drainage channel

Search Result 141, Processing Time 0.021 seconds

Geomorphological Characteristics of the Miho Stream Flowing through a Granitic Plain, South Korea (화강암 분지를 흐르는 미호천의 지형학적 특색)

  • Kim, Young Rae
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.3
    • /
    • pp.1-11
    • /
    • 2021
  • The drainage area of the Miho stream is composed of granitic basins, gneissic and sedimentary mountains. 80 percent of the Miho stream flows through the Jincheon basin and the Cheongju inner-plain within the Daebo granite belt. Because the deep weathering of granitic hills provides a large amount of sands to the streams, there are wide floodplains with thick alluvium developed in the basin and plain. The thickness of the alluvium is 5~10m and the width of the floodplains is 2~2.5km. In the basin outlet area where a stream passes through the mountain canyon, wide floodplains and deep alluvium are developed in other riverside. The Miho stream is a sand-gravel channel flowing through the Cheongju inner-plain with wide floodplains and deep alluvium formed by deep weathering of granite.

The Prototype and Structure of the Water Supply and Drainage System of the Wolji Pond During the Unified Silla Period (통일신라시대 월지(月池) 입·출수 체계의 원형과 구조)

  • Kim, Hyung-suk;Sim, Woo-kyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.4
    • /
    • pp.124-141
    • /
    • 2019
  • This research explored the relationship between the water quality issue of Wolji Pond (Anapji Pond) with the maintenance of the channel flow circulation system. The water supply and drainage system closely related to the circulation system of pond has been reviewed, rather than the existing water supply and drainage system that has been analyzed in previous studies. As a result of reviewing the water supply system, it has been learned that the water supply system on the southeastern shore of Wolji Pond, being the current water supply hole, has been connected to the east side garden facility (landscaping stone, curved waterway, storage facility of water) between the north and south fence and the waterway. This separate facility group seems to have been a subject of the investigation of the eastern side of Wolji Pond, with the landscaping stones having been identified in the 1920's survey drawings. The water supply facility on the southeastern shore, being the suspected water supply hole, seems to have some connection with the granite waterway remaining on the building site of Imhaejeon (臨海殿) on the southern side of Wolji Pond. It is inferred that it provides clean water, seeing that the slope towards the southwestern shore of Wolji Pond becomes lower, the landscaping stones have been placed in the filter area, and it is present in the 1920's survey drawings and the water supply hole survey drawing of 1975. The water drainage facility on the northern shore is composed of five stages. The functions of the wooden waterway and the rectangular stone water catchment facility seem not to be only for the water drainage of Wolji Pond. In light of the points that there are wood plugs in the wooden waterway and that there is a water catchment facility in the final stage, it is judged that the water of Balcheon Stream (撥川) may be charged in reverse according to this setup. Namely, the water could enter and exit in either direction in the water drainage facility on the northern shore It also seems that the supply to the wooden waterway could be opened and shut through the water catchment facility of rectangular stone group as well. The water drainage facility on the western shore is very similar to the water drainage facility on the northern shore, so it is difficult to avoid the belief that it existed during the Silla Dynasty, or it has been produced by imitating the water drainage facility on the northern shore at some future point in time. It seems to have functioned as the water drainage facility for the supply of agricultural water during the Joseon Dynasty. The water supply and drainage facilities in Wolji Pond have been understood as a systematized distribution network that has been intertwined organically with the facility of Donggung Palace, which was the center of the Silla capital. Water has been supplied to each facility group, including Wolji Pond, through this structure; it includes the drainage system connecting to the Namcheon River (南川) through the Balcheon Stream, which was an important canal of the capital center.

Channel Migration of Byeongmun River Caused by Roof Collapse of Gurin Cave in Mount Halla, Jeiu Island (한라산 구린굴의 천장 함몰로 인한 병문천의 유로 변경)

  • Kim, Tae-Ho;An, Jong-Gi
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.4
    • /
    • pp.466-476
    • /
    • 2008
  • Gurin Cave, 442 m long, is a lava tube developed on the northern slope of Mount Halla. Seventy-three meters of its lower reach became a river channel since Byeongmun River flowed into a window after roof collapse took place. The subterranean channel has a width of 447 cm and a height of 501 cm, respectively. Its banks show well-developed lava shelves of a typical lava tube, while its floor has sculpted forms which characterize a bed of a bedrock stream. The reach is likely to be collapsed and then has four collapsed windows since its roof has the densely developed testudinal joints and consists of thin lavas with a thickness of 30 to 60 cm. Before the subterranean channel appeared, a ground channel flowed over the cave and joined into a main channel of Byeongmun River at 653 m in altitude. However, the subterranean channel substituted the ground channel since a bed of the ground channel collapsed into the cave. The new channel, flowing through the cave, joined into a main channel at 660 m in altitude. As the drainage area of Byeongmun River expanded upstream the cave, the new channel changed into a main channel. Since floodwater flows down the ground channel as well as the subterranean channel, a distributary stream has temporarily appeared at the collapsed window. Lava tubes are likely to have an affect on the development of river system in Jeiu Island, in that the caves have constantly shown roof-fall.

Geomorphological Processes and Changes of Waterfalls formed by Channel Avulsion (하도 변위에 의한 폭포의 형성과 변화)

  • Lee, Gwang-Ryul
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.5
    • /
    • pp.615-628
    • /
    • 2013
  • The waterfall can be formed by difference between the height of up and down part in new channel, is formed by channel avulsion that rapidly changing of river channel course. This study described types and processes of waterfalls by channel avulsion, and analyzed rates and factors of waterfall recession, on object to 7 waterfalls in South Korea. Bulyeong falls at Uljin-gun, Yongchu falls at Yeongdeok-gun, Jikyeon falls at Yanggu-gun and Gwangpum falls at Uljin-gun are formed by natural incised meander cutoff. Samhyeongje falls at Taebaek-si and Guryong falls are formed by river capture processes, and Palbong falls at Chungju-si is formed by artificial channel cutting for farm land secured. The locations of waterfalls gradually moved to upstream over time by head erosion. The recession rates were measured by 3~4m/ka on Bulyeong falls, Yongchu falls, Jikyeon falls and Samhyeongje falls, to estimate of formation age. Recession rates of these 4 waterfalls were analyzed that have clearly positive correlations with drainage area, precipitation, corrosion and weathering capability of bedrock, and initial height of waterfall.

  • PDF

R-22 and R-410A Condensation in Flat Aluminum Multi-Channel Tubes

  • Kim, Nae-Hyun;Min, Chang-Keun;Jung, Ho-Jong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.3
    • /
    • pp.114-124
    • /
    • 2003
  • In this study, condensation heat transfer tests were conducted in flat aluminum multi-channel tubes using R-410A, and the results are compared with those of R-22. The flat tubes have two internal geometries; one with smooth inner surface and the other with micro-fins. Data are presented for the following range of variables; vapor Quality (0.1∼0.9), mass flux (200∼600 kg/$m^2$s) and heat flux (5∼15 kW/$m^2$). Results show that the effect of surface tension drainage on the fin surface is more pronounced for R-22 than R-410A. The smaller Weber number of R-22 may be responsible. For the smooth tube, the heat transfer coefficient of R-410A is slightly larger than that of R-22. For the micro-fin tube, however, the trend is reversed. Possible reason is provided considering physical properties of the refrigerants. For the smooth tube, Webb's correlation predicts the data reasonably well. For the micro-fin tube, the Yang and Webb model was modified to correlate the present data. The modified model adequately predicts the data.

R-22 and R-410A Condensation in Flat Aluminum Multi-Channel Tubes (알루미늄 다채널 평판관내 R-22 및 R-410A 응축에 관한 연구)

  • Jung, Ho-Jong;Kim, Nae-Hyun;Yoon, Baek;Kim, Man-Hoi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.575-583
    • /
    • 2002
  • In this study, condensation heat transfer tests were conducted in flat aluminum multi-channel tubes using R-410A, and the results are compared with those of R-22. Two internal geometries were tested; one with a smooth inner surface and the other with micro-fins. Data are presented for the following range of variables; vapor quality (0.1~0.9), mass flux (200~600 kg/$m^2$s) and heat flux (5~15 ㎾/$m^2$). Results show that the effect of surface tension drainage on the fin surface is more pronounced for R-22 than R-410A. The smaller Weber number for R-22 may be responsible. For the smooth tube, the heat transfer coefficient of R-410A is slightly larger than that of R-22. For the micro-fin tube, however, the reverse is true. Possible reasoning is provided considering the physical properties of the refrigerants. For the smooth tube, a correlation of Akers et at. type predicts the data reasonably well. For the micro-fin tube, the Yang and Webb model was modified to correlate the present data.

Development of a GIUH Model Based on River Fractal Characteristics (하천의 프랙탈 특성을 고려한 지형학적 순간단위도 개발(I))

  • Hong, Il-Pyo;Go, Jae-Ung
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.5
    • /
    • pp.565-577
    • /
    • 1999
  • The geometric patterns of a stream network in a drainage basin can be viewed as a "fractal" with fractal dimensions. Fractals provide a mathematical framework for treatment of irregular, ostensively complex shapes that show similar patterns or geometric characteristics over a range of scale. GIUH (Geomorphological Instantaneous Unit Hydrograph) is based on the hydrologic response of surface runoff in a catchment basin. This model incorporates geomorphologic parameters of a basin using Horton's order ratios. For an ordered drainage system, the fractal dimensions can be derived from Horton's laws of stream numbers, stream lengths and stream areas. In this paper, a fractal approach, which is leading to representation of a 2-parameter Gamma distribution type GIUH, has been carried out to incorporate the self similarity of the channel networks based on the high correlations between the Horton's order ratios. The shape and scale parameter of the GIUH-Nash model of IUH in terms of Horton's order ratios of a catchment proposed by Rosso(l984J are simplified by applying the fractal dimension of main stream length and channel network of a river basin. basin.

  • PDF

Removal Efficiency of Heavy Metals in Acidic Mine Drainage from Microbial Mats (바이오매트 형성에 의한 산성광산배수 내 중금속 유출질량 제거효율)

  • Yu, Hun-Sun;Kwon, Byung-Hyuk;Kim, Park-Sa;So, Yoon-Hwan;Kang, Dong-Hwan
    • Journal of Environmental Science International
    • /
    • v.21 no.6
    • /
    • pp.667-676
    • /
    • 2012
  • This research investigated to reduce mass of heavy metals in AMD(acid mine drainage) by microbial mats formed on the channel bed. As, Cd, Cu, Fe, Mn and Zn components were monitored in water and microbial mats, at three points (AMD1, AMD2 and AMD3), in a total of six times. Average daily discharge mass of heavy metals was highest in July, Fe component contained more than 76% of total discharge mass. Discharge mass of heavy metals of AMD and heavy metal contents in microbial mats decreased with downstream at channel. Heavy metal components that average daily discharge mass is over 0.5 kg were Fe, Cu and Zn, and they were highest in July. Average removal efficiency of heavy metals in AMD was highest about 21% in Fe, this microbial mats were due to form from precipitation of Fe component in AMD by aerobic iron bacteria. Relative content for As component in microbial mats than AMD was over 16 times, this As components were due to absorb at iron oxide and iron hydroxide on the surface of microbial mats.

Analysis of Sediment Reduction with VFS and Diversion Channel with Enhancements in SWAT Landuse-Subbasin Overland Flow and VFS Modules

  • Park, Youn-Shik;Kim, Jong-Gun;Kim, Nam-Won;Engel, Bernie;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.752-757
    • /
    • 2009
  • In the last decade, many methods such as greet chamber, reservoir, or debris barrier, have been utilized to manage and prevent muddy water problem. The Vegetative Filter Strip (VFS) has been thought to be one of the most effective methods to trap sediment effectively. The VFS are usually installed at the edge of agricultural areas adjacent to stream or drainage ditches, and it has been shown that the VFS effectively removes pollutants transported with upland runoff. But, if the VFS is installed without any scientific analysis of rainfall-runoff characteristics, soil erosion, and sediment analysis, it may not reduce the sediment as much as expected. Although Soil and Water Assessment Tool (SWAT) model has been used worldwide for many hydrologic and Non-Point Source Pollution (NPSP) analysis at a watershed scale. but it has many limitations in simulating the VFS. Because it considers only 'filter strip width' when the model estimates sediment trapping efficiency, and does not consider the routing of sediment with overland flow option which is expected to maximize the sediment trapping efficiency from upper agricultural subbasin to lower spatially-explicit filter strip. Therefore, the SWAT overland flow option between landuse-subbasins with sediment routing capability was enhanced with modifications in SWAT watershed configuration and SWAT engine. The enhanced SWAT can simulate the sediment trapping efficiency of the VFS in the similar way as the desktop VFSMOD-w system does. Also it now can simulate the effects of overland flow from upper subbasin to reflect the increased runoff volume at the receiving subbasin, which is what is occurring at the field if no diversion channel is installed. In this study, the enhanced SWAT model was applied to small watershed located at Jaun-ri in South Korea to simulate diversion channel and spatially-explicit VFS. It was found that approximately sediment can be reduced by 31%, 65%, 68%, with diversion channel, the VFS, and the VFS with diversion channel, respectively.

  • PDF

Containment Failures of Oil Restricted by Vertical Plates in Current (유벽에 갇힌 기름층의 조류중 손실에 관한 연구)

  • Song Museok;Hyun Beom-Soo;Suh Jung-Chun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.2
    • /
    • pp.40-51
    • /
    • 1998
  • The interaction of contained oil slicks with current was investigated with a two-dimensional experimental setup in the circulating water channel facility. A vertical plate was used to contain the oils against the currents and the evolution of the oil slick, mainly focusing on the water/oil interface, was examined with an aid of a laser sheet. Two different oils - soy bean oil and diesel oil - were studied with varying the current speed (10 cm/sec to 35 cm/sec), the barrier depth (4 cm and 8 cm) and the volume of oil (2 liter to 12 liter). Different types of the interface behavior were observed according to the conditions and their mechanism was discussed based basically on the dimensional analysis. The critical speeds of two types of oil loss mechanism (entrainment failure and drainage failure) were also examined.

  • PDF