• Title/Summary/Keyword: Drainage block

Search Result 77, Processing Time 0.023 seconds

Behavior Analysis of Block Type Wall Constructed for Maintaining the Slope Stability of Rural Structure (농촌건축물 사면 안정성 확보를 위한 블록식 옹벽의 거동분석)

  • Shin, Bangwoong;Oh, Sewook;Kwon, Youngcheul
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.2 no.2
    • /
    • pp.115-126
    • /
    • 2000
  • Retaining walls are used to prevent excessive movement of retained soils. Typical retaining walls include gravity, reinforced concrete, reinforced earth and tie-back. However, from a practical viewpoint there are still drawbacks among these often constructed retaining walls. New types of retaining walls constructed with precast concrete blocks are proposed. This type of retaining wall is incorporates each blocks interconnected with adjacent block by connecting unit to build up a flexible retaining-wall system. This paper focus to behavior characteristics includes deformation and distribution of lateral earth pressure by loading tests and FEM analysis. For model tests, a 1/10 scale reduce models are manufactured include unevenness part, drainage hole and connecting unit and steel wire used to connect each blocks with adjacent block. To simulate the real retaining walls closely, uneven parts are interconnected each other and the construction type of blocks and wall front inclination are varied to investigate the relative displacement of individual block and the location of maximum deformation of wall as increasing surcharging. Additionally, PENTAGON3D, which solve the geotechnical and other problem, used for verifying and comparing with model tests.

  • PDF

Performance of a Chimney Drain in Reinforced Earth Wall for Reduction of Pore Water Pressure During Rainfall - a Numerical Investigation (보강토 옹벽에 적용되는 연직 배수시스템의 강우시 수압 저감 효과 - 수치해석 연구)

  • Yoo, Chung-Sik;Kim, Sun-Bin;Jung, Hyuk-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.99-106
    • /
    • 2008
  • This study is concernsed with the effect of a chimney drainage system installed at the back of reinforced soil block on preventing the pore water pressure development. A series of finite-element analyses based on transient seepage analysis were performed for a number of cases with different patterns of the chimney drainage system. The results were thoroughly analyzed to get insight into the mechanism of pore water pressure reduction effect of the chimney drainage system. It is shown that a vertical drainage system installed at the back of reinforced zone can be an effective means of maintaining the wall stability during rainfall by preventing pore pressure increase in the reinforced as well as the backfill zones. Also shown is that the optimum height of the chimney drain is 50% of the wall height. Practical implications of the findings were discussed.

Multi-Family Housing Block Design Strategy Development by BIM-based Energy Performance Analysis - focusing on the Block Types and the Variations in Stories - (BIM 기반 에너지성능분석을 통한 공동주택의 주동 설계 전략개발 - 주동타입 및 층수 변화를 중심으로 -)

  • Jun, Jae-Hong;Park, hye-Jin;Lee, Kweon-Hyung;Choo, Seoung-Yeon
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.2
    • /
    • pp.3-11
    • /
    • 2018
  • Korea has achieved a rapid economic development and with the increase in population and national income and the expansion of social and economic activities, energy consumption has rapidly increased too. Energy consumption per head has constantly increased and currently, power consumption per head is 7.5 times bigger than in 1985. Buildings occupy 25% of total energy consumption and especially, 50% of total energy is consumed for heating and cooling. In this situation, multi-family housing, which has constantly been increased, has an energy saving rate of 1.9%, which is the lowest level and this makes the government's energy policy for sustainable energy system development useless. Besides, energy consumption leads to secondary problems, such as air, water and marine pollution and heat pollution and wastewater/drainage and the increased use of fossil fuel is a fundamental reason for ozone layer destruction and global warming. Therefore, efficient energy consumption plans are required. This study aims to analyze energy performance in each block type of high-rise and diversified multi-family housing that accounts for 60% of all the housing forms, depending on the variations in stories through BIM-based energy simulation. For this study, four representative block types were selected, based on the multi-family floor plan, which is certified for energy performance evaluation and they were applied to the floor plan of a multi-family house that is scheduled to be built. Then BIM modeling was conducted from the fifth story to the 40th story at an intervals of 5 stories and based on the finding, energy characteristics of each block type and energy performance depending on the variations in stories were analyzed. It is considered that this would serve as objective data for block type and block story decision of energy performance-based multi-family housing.

Volume of Water Storage and Evapotranspiration by Inserted Materials at a Reservoir of Porous Grass Block (저수형 잔디블록 저수조 내 충진재료에 따른 저수량 및 초종별 증발산량)

  • Han, Seung-Ho;Choi, Joon-Soo;Yang, Geun-Mo;Yang, Byoung-E;Kang, Jin-Hyoung;Kim, Won-Tae
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.5 s.118
    • /
    • pp.76-83
    • /
    • 2006
  • The purpose of this study was to investigate the performance of porous grass block. For the investigation, Festuca arundinacea and Zoysia japonica 'Zenith' were planted, and the volume of evapotranspiration and remains were examined based on different materials in the water tank in the experiment of Festuca arundinacea, the volume of water storage of treatment with perlite ($10.84{\iota}/m^2$) was higher than that with drainage ($7l/m^2$). The difference between the two was $3.84/m^2$. The drainage treatment without water storage capacity showed the higher degree of dryness in turf grass. The volume of evapo-transpiration of treatment with perlite was the highest (21.57mm/week). The volume of evapotranspiration of treatment with sand was 19.57mm/week, and with treatment with drainage was 18.24mm/week. Based on the measured volume of daily evapotranspiration of $2.60{\sim}3.08mm\;d^{-1}$, it was determined that the unit with water storage capacity would store water of one to two days usage compared to unite without such storage capacity. In the experiment of Zoysia japonica 'Zenith', the volume of water storage of treatment with perlite was $10.77l/m^2$ which was similar to the former experiment. The volume of evapotranspiration of treatment with perlite and sand were 21.64mm/week and 20.64mm/week, respectively. In case of airtight water tank, the volume was measured as 22.06mm/week. Each treatment has no notable difference in the volume of evapotranspiration. In conclusion, from the investigation in this study, porous grass block with water tank was found to be effective in plant growth under low irrigation. As the ecological area ratio and vegetated porous pavement have became more emphasized, additional study of rain infiltration and reservoir effect are needed in the future.

A Modified Method for the Radial Consolidation with the Time Dependent Well Resistance (시간 의존적 배수저항을 고려한 방사방향 압밀곡선 예측법)

  • Kim, Rae-Hyun;Hong, Sung-Jin;Jung, Doo-Suk;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.77-84
    • /
    • 2008
  • The existing equations for radial consolidation cannot account for the changes of well resistance with time and cannot predict the appropriate in-situ consolidation curve. In this study, small cylinder cell tests are performed to evaluate the discharge capacity of PVD. Also, a block sample of 1.2 m in diameter and 2.0 m in height was consolidated to observe the change in the drainage capacity with time for three types of PVD. From the test results on a block sample, the drainage curves normalized with initial drainage of each PVD are similar, regardless of the PVD type and the consolidation curve, which is predicted using solutions of radial consolidation based on the discharge capacity measured in a small cylinder cell tests, significantly overestimates the degree of consolidation. The term of well resistance in the radial consolidation solution was back-calculated to fit the consolidation curve of a large block sample and it is defined as the time dependent well resistance factor, L(t). The L(t) was found to be linearly proportional to the dimensionless time factor, Th. It was also shown that the consolidation curve evaluated by using L(t) provides more accurate prediction than the existing solution.

An Experimental Study on Behavior Characteristics of Geosynthetics Reinforced Retaining Earth Wall (보강압성토 옹벽의 거동 특성에 관한 실험적 연구)

  • Noh, Taekil;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.3
    • /
    • pp.29-37
    • /
    • 2012
  • This study is to find out the characteristics of the behavior of Geosyntehtic Reinforced Retaining Earth Wall(GRREW) through the laboratory experiment with the reduced-scale model, and to verify the effect of reinforcement by materials of GRREW. The loading tests after combining nonwoven geosynthetic, re-bar mesh nets and drainage blocks respectively among the components of the GRREW were performed in three cases of their slopes. In the cases of the behavior analysis including all of the components of the GRREW, the maximum horizontal displacement was generated 8.4mm at the location of 0.57H in the slope of 1:0.3; 3.8mm at the location of 0.57H in the slope of 1:0.6; 3.6mm at the location of 0.86H in the slope of 1:1.0. On average, the horizontal displacements of the GRREW were reduced by 83.8% against those of the original slopes. Lastly, seepage analysis and slope stability analysis were performed by modelling section of field, to confirm the effect of installation of drainage block in GRREW. We can confirm to compare increasing the slope safe factor and decreasing ground water in accordance with drainage blocks.

Hydraulic Application of Grass Concrete In River Environment (하천환경에서의 그라스콘크리트의 적용성 연구)

  • Jang, Suk-Hwan;Nam, Yong-Hyuk;Kim, Seo-Young;Park, Seong-Beom;Park, Ung-Seo;Park, Sang-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.472-477
    • /
    • 2006
  • This study aims at investigating the failure cases of the pre-cast block system in river environments which widely used nowadays and reviewing the effect and flow resistance for grass concrete structure through the physical experiments by hydraulic model test and developing application method in river slope or levee which has rigid flood resistance. Grass concrete structure has been independently tested under high velocity flow under the super critical condition, it survived the 8 m/sec maximum flow velocity. This results shows grass concrete system is also suited to use in aggressive river environments such as repairing a flood damaged embankment that had placed at risk the adjacent drainage channel with vegetation.

  • PDF

A single injection of saphenous nerve block reduces postoperative bleeding after total knee arthroplasty (무릎전치환술 환자에서 일회성 복재신경차단술이 수술 후 출혈량 감소에 미치는 영향)

  • Choi, Yun Suk;Yun, So Hui;Cho, Seung Yeon;Song, Seung Eun;Kim, Sang Rim
    • Journal of Medicine and Life Science
    • /
    • v.18 no.1
    • /
    • pp.11-15
    • /
    • 2021
  • In elderly patients, the vital parameters tend to fluctuate based on the blood volume status, which may cause sudden hypovolemic shock if the postoperative bleeding continues. Particularly, those who undergo surgery for arthritis needs to pay extra attention because the bleeding may persist over the joints after the surgery. Therefore, appropriate pain control is required to reduce the postoperative blood loss. This retrospective chart review study was conducted to assess the postoperative pain control and reduction of blood loss with a single injection of saphenous nerve block (SNB) in elderly patients with osteoarthritis. We reviewed the electronic medical records of patients who underwent knee total arthroplasty with spinal anesthesia between January and May 2016. A total of 51 patients participated in this study. All patients were treated with intravenous patient-controlled analgesia for the postoperative pain control, and additional analgesic agents were administered at a visual analogue scale above a score of 6. In 25 patients, SNB was performed using ultrasound with the administration of 0.75% ropivacaine (15 mL) after the surgery. Patients who received additional analgesics were significantly low in the nerve block group (P=0.009). Additionally, the volume of blood loss from catheter drainage was significantly low at 2 and 3 days postoperatively (P=0.013 and P=0.041, respectively) in the nerve block group. In patients who underwent total knee arthroplasty with osteoarthritis, only a single injection of saphenous nerve block was sufficient for the postoperative pain control and reduced bleeding.

Quadriplegia due to Epidural Abscess following Continuous Cervical Epidural Block -A case report- (지속적 경부 경막외 차단 중 발생한 경막외 농양에 의한 사지마비 -증례 보고-)

  • Lee, Hyo-Keun;Yang, Seung-Kon;Kim, Ji-Young;Chae, Hwa-Ju;Kim, Ki-Yeob;Kim, Chan
    • The Korean Journal of Pain
    • /
    • v.9 no.1
    • /
    • pp.279-282
    • /
    • 1996
  • A 45-year-old male received cervical continuous epidural block for posterior neck pain radiating to right upper extremity secondary to cervical herniated nucleus pulposus. Three days after epidural catheterization, fever, radicular pain and weakness of both upper extremities were developed. On admission, his temperature was $38.3^{\circ}C$ and showed progressive weakness and numbness in both upper and lower extremities. Cervical epidural abscess was suspected; MRI showed an epidural abscess from C4 to C7 level. Within 24 hours of admission, surgical decompression and drainage was effected. Culture of pus obtained at the lesion yielded Staphylococcus aureus. He was treated with intravenous antibiotics for 7 weeks resulting marked improvement of neurologic signs and symptoms.

  • PDF

Extraction of Potential Area for Block Stream and Talus Using Spatial Integration Model (공간통합 모델을 적용한 암괴류 및 애추 지형 분포가능지 추출)

  • Lee, Seong-Ho;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • This study analyzed the relativity between block stream and talus distributions by employing a likelihood ratio approach. Possible distribution sites for each debris slope landform were extracted by applying a spatial integration model, in which we combined fuzzy set model, Bayesian predictive model, and logistic regression model. Moreover, to verify model performance, a success rate curve was prepared by cross-validation. The results showed that elevation, slope, curvature, topographic wetness index, geology, soil drainage, and soil depth were closely related to the debris slope landform sites. In addition, all spatial integration models displayed an accuracy of over 90%. The accuracy of the distribution potential area map of the block stream was highest in the logistic regression model (93.79%). Eventually, the accuracy of the distribution potential area map of the talus was also highest in the logistic regression model (97.02%). We expect that the present results will provide essential data and propose methodologies to improve the performance of efficient and systematic micro-landform studies. Moreover, our research will potentially help to enhance field research and topographic resource management.