• Title/Summary/Keyword: Drainage Network

Search Result 153, Processing Time 0.03 seconds

Development of Extraction Technique for Irrigated Area and Canal Network Using High Resolution Images (고해상도 영상을 이용한 농업용수 수혜면적 및 용배수로 추출 기법 개발)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Lee, Hee-Jin;Jeon, Min-Gi;Lee, Sang-Il;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.23-32
    • /
    • 2021
  • For agricultural water management, it is essential to establish the digital infrastructure data such as agricultural watershed, irrigated area and canal network in rural areas. Approximately 70,000 irrigation facilities in agricultural watershed, including reservoirs, pumping and draining stations, weirs, and tube wells have been installed in South Korea to enable the efficient management of agricultural water. The total length of irrigation and drainage canal network, important components of agricultural water supply, is 184,000 km. Major problem faced by irrigation facilities management is that these facilities are spread over an irrigated area at a low density and are difficult to access. In addition, the management of irrigation facilities suffers from missing or errors of spatial information and acquisition of limited range of data through direct survey. Therefore, it is necessary to establish and redefine accurate identification of irrigated areas and canal network using up-to-date high resolution images. In this study, previous existing data such as RIMS (Rural Infrastructure Management System), smart farm map, and land cover map were used to redefine irrigated area and canal network based on appropriate image data using satellite imagery, aerial imagery, and drone imagery. The results of the building the digital infrastructure in rural areas are expected to be utilized for efficient water allocation and planning, such as identifying areas of water shortage and monitoring spatiotemporal distribution of water supply by irrigated areas and irrigation canal network.

Accuracy Improvement of Urban Runoff Model Linked with Optimal Simulation (최적모의기법과 연계한 도시유출모형의 정확도 개선)

  • Ha, Chang-Young;Kim, Byunghyun;Son, Ah-Long;Han, Kun-Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.215-226
    • /
    • 2018
  • The purpose of this study is to improve the accuracy of the urban runoff and drainage network analysis by using the observed water level in the drainage network. To do this, sensitivity analysis for major parameters of SWMM (Storm Water Management Model) was performed and parameters were calibrated. The sensitivity of the parameters was the order of the roughness of the conduit, the roughness of the impervious area, the width of the watershed, and the roughness of the pervious area. Six types of scenarios were set up according to the number and types of parameter considering four parameters with high sensitivity. These scenarios were applied to the Seocho-3/4/5, Yeoksam, and Nonhyun drainage basins, where the serious flood damage occurred due to the heavy rain on 21 July, 2013. Parameter optimization analysis based on PEST (Parameter ESTimation) model for each scenario was performed by comparing observed water level in the conduits. By analyzing the accuracy of each scenario, more improved simulation results could be obtained, that is, the maximum RMSE (Root Mean Square Error) could be reduced by 2.41cm and the maximum peak error by 13.7%. The results of this study will be helpful to analyze volume of the manhole surcharge and forecast the inundation area more accurately.

Spatio-temporal deep learning model for urban drainage network: (2) Improving model's robustness (우수관망 시공간 딥러닝 모델: (2) 모델 강건성 향상을 위한 연구)

  • Yubin An;Soon Ho Kwon;Donghwi Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.228-228
    • /
    • 2023
  • 국지적 지역에 내리는 강한 강도의 강우는 많은 인명 및 재산 피해를 발생시킨다. 이러한 피해를 예방하기 위해 도시 침수 예측에 관한 연구가 오랜 기간 수행되어 왔으며, 최근에는 다양한 신경망(neural network) 모델이 활발히 이용되고 있다. 강우 지속 기간이나 강도는 일정하지 않고, 공간적 특징 또한 도시마다 다르므로 안정적인 침수 예측을 위한 신경망 모델은 강건성(robustness)을 지녀야 한다. 강건한 신경망 모델이란 적대적 공격(adversarial attack)을 방어할 수 있는 능력을 갖춘 모델을 일컫는다. 따라서 본 연구에서는, 도시 침수 예측을 위한 시공간 신경망(spatio-temporal neural network) 모델의 강건성 제고를 위한 방법론을 제안한다. 먼저 적대적 공격의 유형과 방어 방법을 분류하고, 시공간 신경망 모델의 학습 데이터 특성 및 모델 구조구성 조건 등을 활용하여 최적의 강건성 제고 방안을 도출하였다. 해당 모델은 집중호우로 인해 나타날 다양한 관망에서의 침수 피해를 각각 예측하고 피해를 예방하기 위해 활용될 수 있다.

  • PDF

Runoff Simulation of An Urban Drainage System Using Radar Rainfall Data (레이더 강우 자료를 이용한 도시유역의 유출 모의)

  • Kang, Na Rae;Noh, Hui Seung;Lee, Jong So;Lim, Sang Hun;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.413-422
    • /
    • 2013
  • In recent, the rainfall is showing different properties in space and time but the ground rain gauge only can observe rainfall at a point. This means the ground rain gauge has the limitations in spatial and temporal resolutions to measure rainfall and so there is a need to utilize radar rainfall which can consider spatial distribution of rainfall This study tried to apply radar rainfall for runoff simulation on an urban drainage system. The study area is Guro-gu, Seoul and we divided study area into subbasins based on rain gauge network of AWS(Automatic Weather station). Then the radar rainfalls were adjusted using rainfall data of rain gauge stations the areal rainfalls were obtained. The runoffs were simulated by using XP-SWMM model in subbasins of an urban drainage system. As the results, the adjusted radar rainfalls were underestimated in the range of 60 to 95% of rain gauge rainfalls and so the simulated runoffs from the adjusted radar and gauge rainfalls also showed the differences. The runoff peak time from radar rainfall was occurred more fast than that from gauge rainfall.

Water Quality Management of Agricultural Lakes Through Analysis of Agricultural Water Quality Survey Network Data (농업용수 수질측정망 자료 분석을 통한 농업용 호소의 수질관리방안)

  • Kim, Ho Il;Kim, Hyung Joong
    • KCID journal
    • /
    • v.19 no.1
    • /
    • pp.19-29
    • /
    • 2012
  • The data of the agricultural water quality survey network was analyzed between from 1990 to 2010 in order to propose effective plans for water quality management by analyzing the characteristics of agricultural lakes and the change of water quality. The result of the analysis shows that there is a correlation between water quality and items that can be a function of water depth such as dam height, dam length, dam height/dam length ratio and active storage/surface area of lake ratio. This means that, Korean agricultural lakes, there is a correlation between water quality and water depth. Water quality of the lakes that have lower than 5m of active storage/surface area of lake ratio (effective water depth) especially tends to get worse rapidly. The Chl-a and COD concentration of Korean agricultural lakes have a tendency to increase between June and September. Therefore, we recommend first taking a water quality improvement project for the lakes preformed watershed management project, and taking a preventive short-term water quality improvement project for the unperformed lakes before June among lakes that have lower than 5m of effective water depth.

  • PDF

Optimization Analysis between Processing Parameters and Physical Properties of Geocomposites (지오컴포지트의 공정인자와 물성의 최적화 분석)

  • Jeon, Han-Yong;Kim, Joo-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.1
    • /
    • pp.39-43
    • /
    • 2007
  • Geocomposites of needle punched and spunbonded nonwovens having the reinforcement and drainage functions were manufactured by use of thermal bonding method. The physical properties (e.g. tensile, tear and bursting strength, permittivity) of these multi-layered nonwovens were dependent on the processing parameters of temperatures, pressures, bonding periods etc. - in manufacturing by use of thermal bonding method. Therefore, it is very meaningful to optimize the processing parameters and physical properties of the geocomposites by thermal bonding method. In this study, an algorithm has been developed to optimize the process of the geocomposites using an artificial neural network (ANN). Geocomposites were employed to examine the effects of manufacturing methods on the analysis results and the neural network simulations have been applied to predict the changes of the nonwovens performances by varying the processing parameters.

  • PDF

Optimization of pipeline Operation for Stable Landfill Gas Collection Using Numerical Analysis (안정적 매립가스 포집을 위한 배관망 최적운용 분석)

  • 김인기;김세준;허대기;김현태;성원모;배위섭
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.43-52
    • /
    • 2001
  • It is important that the gas collected from wells completed in waste landfill should be continuously and stably transported to pre-treatment stage through pipelines. The transport is generally affected by fluid flow characteristics of landfill, gas reserves, leachate moisture holdup in pipeline, structures and dimensions of pipeline network, etc. This paper analyzes the pipeline transport and collection mechanism for gas generated in a durable waste landfill. From the results, the optimal controlled scheme of blower inlet pressure is proposed for the prevention of trapped gas pocket zones.

  • PDF

Landslide Susceptibility Analysis and Vertification using Artificial Neural Network in the Kangneung Area (인공신경망을 이용한 강릉지역 산사태 취약성 분석 및 검증)

  • Lee, Sa-Ro;Lee, Myeong-Jin;Won, Jung-Seon
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.33-43
    • /
    • 2005
  • The purpose of this study is to make and validate landslide susceptibility map using artificial neural network and GIS in Kangneung area. For this, topography, soil, forest, geology and land cover data sets were constructed as a spatial database in GIS. From the database, slope, aspect, curvature, water system, topographic type, soil texture, soil material, soil drainage, soil effective thickness, wood type, wood age, wood diameter, forest density, lithology, land cover, and lineament were used as the landslide occurrence factors. The weight of the each factor was calculated, and applied to make landslide susceptibility maps using artificial neural network. Then the maps were validated using rate curve method which can predict qualitatively the landslide occurrence. The landslide susceptibility map can be used to reduce associated hazards, and to plan land use and construction as basic data.

Analysis of bifurcation characteristics for the Seolmacheon experimental catchment based on variable scale of source basin (수원 유역의 변동성 규모를 기반으로 한 설마천 시험유역의 분기 특성 해석)

  • Kim, Joo-Cheol;Jung, Kwan Sue
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.5
    • /
    • pp.289-299
    • /
    • 2021
  • This study analyzes bifurcation characteristics of the Seolmacheon experimental catchment by extracting the shape variation of channel network due to variable scale of source basin or threshold area. As the area of source basin decreases, a bifurcation process of channel network occurs within the basin of interest, resulting in the elongation of channel network (increase of total channel length) as well as the expansion of channel network (increase of the source number). In the former case, the elongation of channel reaches overwhelms the generation of sources, whereas, in the latter case, the drainage path network tends to fulfill the inner space of the basin of interest reflecting the opposite trend. Therefore, scale invariance of natural channel network could be expressed to be a balanced geomorphologic feature between the elongation of channel network and the expansion of channel network due to decrease of source basin scale. The bifurcation structure of the Seolmacheon experimental catchment can be characterized by the coexistence of the elongation and scale invariance of channel network, and thus a further study is required to find out which factor is more crucial to rainfall transformation into runoff.

Interplay between Inflammatory Responses and Lymphatic Vessels

  • Shin, Kihyuk;Lee, Seung-Hyo
    • IMMUNE NETWORK
    • /
    • v.14 no.4
    • /
    • pp.182-186
    • /
    • 2014
  • Lymphatic vessels are routes for leukocyte migration and fluid drainage. In addition to their passive roles in migration of leukocytes, increasing evidence indicates their active roles in immune regulation. Tissue inflammation rapidly induces lymphatic endothelial cell proliferation and chemokine production, thereby resulting in lymphangiogenesis. Furthermore, lymphatic endothelial cells induce T cell tolerance through various mechanisms. In this review, we focus on the current knowledge on how inflammatory cytokines affect lymphangiogenesis and the roles of lymphatic vessels in modulating immune responses.