• Title/Summary/Keyword: Drainage Network

Search Result 153, Processing Time 0.022 seconds

A Linear Analysis of the Relation between Rainfall and Runoff for Peak Flow based on Geomorphologic IUH (지형학적(地形學的) 순간단위도(瞬間單位圖)에 의한 첨두유량(尖頭流量)의 강우(降雨)-유출(流出) 선형해석(線形解析))

  • Lee, Jung Sik;Kim, Jae Han;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.55-64
    • /
    • 1987
  • The schemes synthesizing the instantaneous unit hydrograph(IUH) are presented by using the geomorphologic parameters of a basin. To this end, the channels in the network are numbered according to the Strahler scheme, and the mathematical formulation corresponding to a dynamic probability theory for deriving the geomorphologic IUH(GUH) is refered to the existing techniques adopted by Rodriguez-Iturbe and Valdes. Also, the mean runoff velocity is applied for expressing a dynamic state of flow. The applicability of the GUH to the real drainage basins is tested by using the data observed in a few basins with areas of the order of 9.2, 20, 33.63, and $109.73km^2$ in Korea. The test is carried out by checking the discrepancies between the observed and simulated values for the peak discharge and its time of occurrence which are the most important parameters of an IUH by varing the mean runoff velocity and the inputs. As a result, good agreement is found between them, and it is shown that the variability in peak discharge of hydrograph depends on the mean runoff velocity more than the constant loss rate.

  • PDF

A Study on urban runoff by deter ministic simulation techniques. (확정론적 모의기법에 의한 도시유출 해석에 관한 연구)

  • 이은영;강관원
    • Water for future
    • /
    • v.15 no.3
    • /
    • pp.37-47
    • /
    • 1982
  • In the past, the design flow of the urban storm drainage systems has been used largely on a basis of empirical and experience, and the rational formula one of empirical method has been widely used for our country, as well as world wide. But the empirical method has insufficient factor because minimal consideration is given to the relationship of the parameters in the equation to the processes being considered, and considerable use of experience and judgment in setting values to the coefficients in the equation is made. The postcomputer era of hydrology has brought an acceleration development of mathematical methods, thus mathematical models are methods which will greatly increase our understanding in hydrology. On this study, a simple mathematical model of urban presented by British Road Research Laboratory is tested on urban watersheds in Ju An Ju Gong Apartment. The basin is located in Kan Seog Dong, Inchon. The model produces a runoff hydrograph by applying rain all to only the directly connected impervious area of the basin. To apply this model the basin is divided into contributing areas or subbasins. With this information the time area for contributing is derived. The rainfall hyetograph to design storm for the basin flow has been obtained by determination of total rainfall and the temporal distribution of that rainfall determined on the basis of Huff's method form historical rainfall data of the basin. The inflows from several subbaisns are successively routed down the network of reaches from the upstream end to the outlet. A simple storage routing technique is used which involves the use of the Manning equation to compute the stage discharge curve for the cross-section in question. To apply the model to a basin, the pattern of impervious areas must be known in detail, as well as the slopes and sizes of all surface and subsurface drains.

  • PDF

GIS-Based Design Flood Estimation of Ungauged Watershed (논문 - GIS기반의 미계측 유역 설계홍수량 산정)

  • Hong, Seong-Min;Jung, In-Kyun;Park, Jong-Yoon;Lee, Mi-Seon;Kim, Seong-Joon
    • KCID journal
    • /
    • v.18 no.2
    • /
    • pp.87-100
    • /
    • 2011
  • This study is to delineate the watershed hydrological parameters such as area, slope, rain gauge weight, NRCS-CN and time of concentration (Tc) by using the Geographic Information Sytem (GIS) technique, and estimation of design flood for an ungauged watershed. Especially, we attempted to determine the Tc of ungauged watershed and develop simple program using the cell-based algorithm to calculates upstream or downstream flow time along a flow path for each cell. For a $19km^2$ watershed of tributary of Nakdong river (Seupmoon), the parameters including flow direction, flow accumulation, watershed boundary, stream network and Tc map were extracted from 30m Agreeburn DEM (Digital Elevation Model) and landcover map. And NRCS-CN was extracted from 30m landcover map and soil map. Design rainfall estimation for two rainfall gauge which are Sunsan and Jangcheon using FARD2006 that developed by National Institute for Disaster Prevention (NIDP). Using the parameters as input data of HEC-l model, the design flood was estimated by applying Clark unit hydrograph method. The results showed that the design flood of 50 year frequency of this study was $8m^3/sec$ less than that of the previous fundamental plan in 1994. The value difference came from the different application of watershed parameter, different rainfall distribution (Huff quartile vs. Mononobe) and critical durations. We could infer that the GIS-based parameter preparation is more reasonable than the previous hand-made extraction of watershed parameters.

  • PDF

Evaluation of Catchbasin for Increasing Interception Capability of Stormwater Runoff (강우유출수 차집능력 증대형 빗물받이의 성능 평가)

  • Han, Sangjong;Shin, Hyunjun;Hwang, Hwankook
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.567-575
    • /
    • 2017
  • It is not cost effective to raise the density of catch basins in preparation for heavy rainfall in terms of construction and maintenance. Our researchers have developed the new catch basin for increasing interception capacity of runoff with internal filtration structure. To compare interception capacity of an existing catch basin with the invented catch basin, a hydraulic experiment device with 4% of road gradients and 0.2% of road gradients was constructed. For runoff conditions of 4.4 l/s, 6.7 l/s and 10.4 l/s, capability of runoff and separation capability of debris (sand and leaves) were evaluated. As the main experimental results, the effectiveness of the developed catch basin has been verified with an increase in interception rate of approximately 22% for the runoff of 6.7 l/s as heavy rainfall. However, the results of invented catch basin showed only 4.5% of settlement rate of debris regarding sand. Therefore, the authors proposed an improved tilted screen structure additionally. After reviewing the performance of improved catch basin, application of the invented catch basin is expected to drain runoff effectively when it is applied to the faulty road drainage section.

The Geomorphic Characteristics of Okcheon Basin & Jincheon Basin (옥천분지와 진천분지의 지형특성)

  • Youn, In-Hyeok
    • Journal of the Korean association of regional geographers
    • /
    • v.7 no.4
    • /
    • pp.93-104
    • /
    • 2001
  • The purpose of this study is to analyze the geomorphic characteristics of two erosional basins with same geological conditions. The study areas, the Okcheon basin ($36^{\circ}\;14'{\sim}36^{\circ}\;20'\;N,\;127^{\circ}\;32'\;30"{\sim}127^{\circ}\;37'\;37"\;E$) and Jincheon basin($36^{\circ}\;48'{\sim}37^{\circ}\;03'\;N,\;127^{\circ}\;22'{\sim}127^{\circ}\;36'\;E$), are located on middle part of the Geum river. The geological maps, a summit level map, and a drainage network map are created and analyzed the geomorphic characteristics. The main results are as follows: 1) The Okcheon basin and Jincheon basin are typical erosional basin, in which basin floor are composed of granite. 2) The formation of Okcheon basin and Jincheon basin resulted from differencial erosion after upwarping. 3) Okcheon basin and Jincheon basin are available for specialized agriculture area and a site of new settlement with satisfactory to accessibility.

  • PDF

Development and Use of Digital Climate Models in Northern Gyunggi Province - I. Derivation of DCMs from Historical Climate Data and Local Land Surface Features (경기북부지역 정밀 수치기후도 제작 및 활용 - I. 수치기후도 제작)

  • 김성기;박중수;이은섭;장정희;정유란;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.1
    • /
    • pp.49-60
    • /
    • 2004
  • Northern Gyeonggi Province(NGP), consisting of 3 counties, is the northernmost region in South Korea adjacent to the de-militarized zone with North Korea. To supplement insufficient spatial coverage of official climate data and climate atlases based on those data, high-resolution digital climate models(DCM) were prepared to support weather- related activities of residents in NGP Monthly climate data from 51 synoptic stations across both North and South Korea were collected for 1981-2000. A digital elevation model(DEM) for this region with 30m cell spacing was used with the climate data for spatially interpolating daily maximum and minimum temperatures, solar irradiance, and precipitation based on relevant topoclimatological models. For daily minimum temperature, a spatial interpolation scheme accommodating the potential influences of cold air accumulation and the temperature inversion was used. For daily maximum temperature estimation, a spatial interpolation model loaded with the overheating index was used. Daily solar irradiances over sloping surfaces were estimated from nearby synoptic station data weighted by potential relative radiation, which is the hourly sum of relative solar intensity. Precipitation was assumed to increase with the difference between virtual terrain elevation and the DEM multiplied by an observed rate. Validations were carried out by installing an observation network specifically for making comparisons with the spatially estimated temperature pattern. Freezing risk in January was estimated for major fruit tree species based on the DCMs under the recurrence intervals of 10, 30, and 100 years, respectively. Frost risks at bud-burst and blossom of tree flowers were also estimated for the same resolution as the DCMs.

Analysis of the Causes of Flow Stagnation and Water Pollution in Yeouido Saetgang River (여의도 샛강 흐름 정체와 수질악화 원인 분석)

  • Kang, Hyeongsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • The urban river has played an important role in biodiversity by providing various waterside areas in urban areas that are difficult for organisms to live in. The river is also used as a resting place and experience space for citizens. In particular, Yeouido Saetgang is the first ecological park in Korea, and it is located in the heart of downtown Seoul, making it highly valuable for its location and ecological value. However, water quality issues have continuously been raised since the construction project of Yeouido Saetgang river. So it is necessary to investigate the environment state and analyze the causes of the environment deterioration. In this study, the causes of the river stagnation and water quality deterioration in Yeouido Saetgang river were analyzed. For this, river surveys and aerial photo analysis were used to analyze the causes of difficulties in natural water circulation. Also, the results of monitoring water quality showed that the averaged level of BOD and T-P in dry season is III and IV, respectively, while that of BOD and T-P are V~VI in rainy season. In addition, through the drainage analysis of sewer network, small drainages that affect the water quality in Saetgang river was selected and discussed.

Estimating TOC Concentrations Using an Optically-Active Water Quality Factors in Estuarine Reservoirs (광학특성을 가진 수질변수를 활용한 하구 담수호 내 TOC 농도 추정)

  • Kim, Jinuk;Jang, Wonjin;Shin, Jaeki;Kang, Euntae;Kim, Jinhwi;Park, Yongeun;Kim, Seongjoon
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.531-538
    • /
    • 2021
  • In this study, the TOC in six estuarine reservoirs in the West Sea (Ganwol, Namyang, Daeho, Bunam, Sapkyo, and Asan) was estimated using optically-active water quality factors by the water environment monitoring network. First, specification data and land use maps of each estuarine reservoir were collected. Subsequently, water quality data from 2013 to 2020 were collected. The data comprised of 11 parameters: pH, dissolved oxygen, BOD, COD, suspended solids (SS), total nitrogen, total phosphorus, water temperature, electrical conductivity, total coliforms, and chlorophyll-a (Chl-a). The TOC in the estuarine reservoirs was 4.9~7.0 mg/L, with the highest TOC of 7.0 mg/L observed at the Namyang reservoir, which has a low shape coefficient and high drainage density. The correlation of TOC with water quality factors was also analyzed, and the correlation coefficients of Chl-a and SS were 0.28 and 0.19, respectively, while the correlation coefficients of these factors in the Namyang reservoir were 0.42 and 0.27, respectively. To improve the estimation of TOC using Chl-a and SS, the TOC was averaged in 5 mg/L units, and Chl-a and SS were averaged. Correlation analysis was then performed and the R2 of Chl-a-TOC was 0.73. The R2 of SS-TOC was 0.73 with a non-linear relationship. TOC had a significant non-linear relationship with Chl-a and SS. However, the relationship should be assessed in terms of the spatial and temporal variations to construct a reliable remote sensing system.

Pathogenesis and Prevention of Intraventricular Hemorrhage in Preterm Infants

  • Pei-Chen Tsao
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.3
    • /
    • pp.228-238
    • /
    • 2023
  • Intraventricular hemorrhage (IVH) is a serious concern for preterm infants and can predispose such infants to brain injury and poor neurodevelopmental outcomes. IVH is particularly common in preterm infants. Although advances in obstetric management and neonatal care have led to a lower mortality rate for preterm infants with IVH, the IVH-related morbidity rate in this population remains high. Therefore, the present review investigated the pathophysiology of IVH and the evidence related to interventions for prevention. The analysis of the pathophysiology of IVH was conducted with a focus on the factors associated with cerebral hemodynamics, vulnerabilities in the structure of cerebral vessels, and host or genetic predisposing factors. The findings presented in the literature indicate that fluctuations in cerebral blood flow, the presence of hemodynamic significant patent ductus arteriosus, arterial carbon dioxide tension, and impaired cerebral venous drainage; a vulnerable or fragile capillary network; and a genetic variant associated with a mechanism underlying IVH development may lead to preterm infants developing IVH. Therefore, strategies focused on antenatal management, such as routine corticosteroid administration and magnesium sulfate use; perinatal management, such as maternal transfer to a specialized center; and postnatal management, including pharmacological agent administration and circulatory management involving prevention of extreme blood pressure, hemodynamic significant patent ductus arteriosus management, and optimization of cardiac function, can lower the likelihood of IVH development in preterm infants. Incorporating neuroprotective care bundles into routine care for such infants may also reduce the likelihood of IVH development. The findings regarding the pathogenesis of IVH further indicate that cerebrovascular status and systemic hemodynamic changes must be analyzed and monitored in preterm infants and that individualized management strategies must be developed with consideration of the risk factors for and physiological status of each preterm infant.

Evaluation of Accuracy of the Physics Based Distributed Hydrologic Model Using VfloTM Model (VfloTM 모형을 이용한 물리기반의 분포형 수문모형의 정확성 평가)

  • Hong, Jun Bum;Kim, Byung Sik;Yoon, Seok Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.613-622
    • /
    • 2006
  • In this study, a fully distributed physical-based rainfall-runoff model called Vflo$^{TM}$ is applied to Junglang-cheon basin for simulating runoff. Geo-spatial data are used to parameterize the model to account for the characteristics of soils, landuse/cover, and topograph. 300m resolution DEM is used to compute slope and drainage network connectivity. Spatially distributed rainfall data is interpolated by ordinary kriging method. In this study, hydrograph from HEC-HMS and Vflo$^{TM}$ without/with calibration of parameters was compared to evaluate the accuracy of rainfall-runoff model From the results, a fully distributed physical-based rainfall-runoff model reproduce the peak time and shape of hydrograph much better than HEC-HMS.