• Title/Summary/Keyword: Drainage Area

Search Result 1,004, Processing Time 0.024 seconds

Field Test of Mitigation Methods for Stray Currents from DC Electric Railroad(1) Stray Current Drainage System (직류전기철도 전식대책 실증실험(1) 누설전류 배류시스템)

  • Ha, Yoon-Cheol;Bae, Jeong-Hyo;Ha, Tae-Hyun;Lee, Hyun-Goo;Kim, Dae-Kyeong;Choi, Jeong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.220-222
    • /
    • 2007
  • With the wide spread of direct current (DC) electric railroads in Korea, the stray currents or leakage currents from negative return rails become a pending problem to the safety of nearby underground infrastructures. The most widely used mitigation method for this interference is the stray current drainage method, which connects the underground metallic structures to the rails with diodes (polarized drainage) or thyristor (forced drainage). Although this method inherently possesses some drawbacks, its cost effectiveness and efficiency to protect the interfered structures has been the main reason for the wide adoption. In this paper, we show the field test results for the application of stray current drainage system to a city gas pipeline paralleling a depot area of a metropolitan rapid transit system. The process for optimal positioning is briefly illustrated. The effectiveness of constant voltage, constant current, and constant potential drainage schemes was also described.

  • PDF

Comparison of Growth Characteristics and Ginsenoside Contents by Drainage classes and Varieties in 3-Year-Old Ginseng (Panax ginseng C. A. Meyer) (논토양 배수등급 및 품종별 3년생 인삼의 생육과 진세노사이드함량 비교)

  • Lee, Sung-Woo;Kim, Gum-Sook;Yeon, Byeong-Yeol;Hyun, Dong-Yun;Kim, Yong-Burm;Kang, Seung-Won;Kim, Young-Churl
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.5
    • /
    • pp.346-351
    • /
    • 2009
  • To study the optimal cultivation for paddy soil, growth characteristics and ginsenoside content was investigated by both of poor drainage class (PDC) and imperfect drainage class (IDC) in three-year-old ginseng of varieties, Cheonpoong (CP), Yeonpoong (YP), Hwangsookjong (HS), and Jakyeongjong (JK). Root yield of IDC was higher than that of PDC by 3.6 times because stem length, leaf area, and chlorophyll contents were increased, while discolored leaf ratio was decreased. Root yield of HS in PDC was highest among four varieties because chlorophyll contents, leaf area, and survived plant ratio were relatively high. Root yield of CP in IDC was highest among four varieties because of high leaf area and survived plant ratio, and low discolored leaf ratio. Ratio of rusty-colored root showed significant difference by varieties, which was the highest in HS and the lowest in CP among four varieties irrespective of drainage classes. Total ginsenoside contents showed significant difference by drainage classes, which were high in IDC of good growth and low in PDC of poor growth. Total ginsenoside contents were high in JK and CP, while low in HS and YP both of drainage classes.

A Study on Urban Inundation Prediction Using Urban Runoff Model and Flood Inundation Model (도시유출모형과 홍수범람모형을 연계한 내수침수 적용성 평가)

  • Tak, Yong Hun;Kim, Jae Dong;Kim, Young Do;Kang, Boosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.395-406
    • /
    • 2016
  • Population and development are concentrated by urbanization. Consequently, the usage of underground area and the riverside area have been increased. By increasing impermeable layer, the urban basin drainage is depending on level of sewer. Flood damage is occurred by shortage of sewer capacity and poor interior drainage at river stage. Many of researches about flood stress the unavailability of connection at the river stage with the internal inundation organically. In this study, flood calculated considering rainfall and combined inland-river. Also, using urban runoff model analyze the overflow of sewer. By using results of SWMM model, using flood inundation analysis model analyzed internal drainage efficiency of drainage system. Applying SWMM model, which results to flood inundation analysis model, analyzes internal drainage efficiency of drainage system under localized heavy rain in a basin of the city. The results of SWMM model show the smoothness of internal drainage can be impossible to achieve because of the influence of the river level and sewer overflow appearing. The main manholes were selected as the manhole of a lot of overflow volume. Overflow reduction scenarios were selected for expansion of sewer conduit and instruction retention pond. Overflow volume reduces to 45% and 33~64% by retention pond instruction and sewer conduit expansion. In addition, the results of simulating of flood inundation analysis model show the flood occurrence by road runoff moving along the road slope. Flooded area reduces to 19.6%, 60.5% in sewer conduit expansion scenarios.

Safety Inspection of Sea Dike in Reclamation Project Area Using Electrical and Electromagnetic Survey (전기, 전자탐사법을 이용한 간척개발 사업지구 내 방조제 안전점검)

  • Song, Seong-Ho;Seong, Baek-Uk;Kim, Yeong-Gyu
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.254-261
    • /
    • 2006
  • We applied electrical resistivity survey using modified pole-pole array and small-loop electromagnetic survey to delineate the zone of seawater inflow through a tide embankment. The tide embankment is generally affected by tidal variation and has low resistivity characteristic due to the high saturation of seawater. For this reason, the electrical resistivity survey using modified pole-pole array, which is relatively more effective to the conductive media, was carried out to detect the inflow zone of seawater and small-loop electromagnetic survey using multi-frequency with 300 to 20,010 Hz was conducted. As a result of both electrical resistivity survey using modified pole-pole array and small -loop electromagnetic survey, these survey methods are found to be quite effective for investigation of seawater inflow zone in the sea dike.

  • PDF

Simulation of circulation in Estuarine Lake caused by Operation of Drainage gates (배수갑문 운영을 고려한 간척 하구호의 해수순환모의)

  • Park, Young-Jin;Eom, Myung-Chul;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.313-317
    • /
    • 2005
  • This study aimed to estimate applicability of a model to simulate circulation in estuarine lake caused by operation of drainage gates. The model consists of 2D (depth-averaged) hydrodynamic models, Delft3D-FLOW model and operation model for drainage gates. The flow through drainage gates was calculated using weir formulae with discharge coefficient, 0.8. The simulations are performed under two conditions: uncontrolled condition and controlled by periods of two days. The results on simulation of the model showed that the water level in estuarine lake was tend to increase above mean sea level. Therefore it was proved that the calibration and verification were needed in order to applicate this model for Saemankeum area.

  • PDF

Analysis of the Stray Current Conditions in Subway DC Electrification System (I) Seoul Metropolitan Area (지하철 직류 급전시스템의 표유전류 실태 분석(I) 서울 지역)

  • Ha Yoon-Cheol;Ha Tae-Hyun;Bae Jeong-Hyo;Kim Dae-Kyeong;Lee Hyun-Goo
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1364-1366
    • /
    • 2004
  • When an underground pipeline runs parallel with DC-powered railways, it suffers from electrolytic corrosion caused by the stray current leaked from the railway negative returns. Perforation due to the electrolytic corrosion may bring about large-scale accidents even cathodically protected systems. Traditionally, bonding methods such as direct drainage, polarized drainage and forced drainage have been used in order to mitigate the damage on pipelines. In particular, the forced drainage method is widely adopted in Seoul. In this paper, we report the analysis of the stray current conditions in Seoul subway DC electrification system.

  • PDF

Ecological Risk Assessment(ERA) of Abandoned Mine Drainage(AMD) in Korea Based on Vibrio fisheri, Selenastrum capricornutum, and Daphnia magna (국내 폐광산 지역의 Vibrio fisheri, Selenastrum capricornutum, 그리고 Daphnia magna를 이용한 생태 위해성 평가)

  • Kim, Ki-Tae;Lee, Byoung-Cheun;Kim, Dong-Wook;Kim, Sang-Don
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.2
    • /
    • pp.163-168
    • /
    • 2007
  • Ecological risk assessment(ERA) to 5 abandoned mine drainage was investigated by using chemical measurement and bioassay experiment. From the results of chemical analysis, the high concentration of heavy metals are detected in most area. The Arsenite were mostly detected in Songcheon, Nakdong, and Dukum abandoned mine area, and various heavy metals were highly dispersed in Nakdong area. The study area have also high biological toxicity, resulted from the bioassay based on WET(Whole Effluent Toxicity) test by using Vibrio fisheri, Selenastrum copricornutum, and Daphnia magna. The maximum toxicity was shown in the point where the mine waters start to flow. The sensitivity of toxicity by S. capricornutum was relatively high considering the values of toxicity in all samples, from 1.3 to 32.0 TU. The different sensitivities of toxicity recommends the use of battery system, resulted from at least two test species for bioassay or ecological risk assessment of mine drainage. Besides, the results showed high hazard quotient(i.e., greater than 1 HQ value indicating potentially significant toxic risks) with regard to abandoned mine drainage area in this study. On the other hand, the biological toxicity results were sharply decreased by attenuation along further distance from discharging of mine waters. Therefore, environmental parameters including the dilution factor, dissolved organic matter, and hardness should be considered when the remediation and ERA of abandoned mine drainage is planned.

Development of Regional Regression Model for Estimating Mean Low Flow in Ungauged Basins (미계측 유역 평균갈수량 산정을 위한 지역회귀모형의 개발)

  • Lee, Tae Hee;Lee, Min Ho;Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.407-416
    • /
    • 2016
  • The purpose of this study is to develop regional regression models to estimate mean low flow for ungauged basins. The unregulated streamflow data observed at 12 multipurpose dams and 4 irrigation dams were analyzed for determining mean low flows. Various types of regression models were developed using the relationship between mean low flows and various sets of watershed characteristics such as drainage area, average slope, drainage density, mean annual precipitation, runoff curve number. The performance of each regression model for estimating mean low flows was assessed by comparison with the results obtained from the observed data. It was found that a regional regression model explained by drainage area, the mean annual precipitation, and runoff curve number showed the best performance. The regression model presented in this study also gives better estimates of mean low flow than the estimates by the drainage-area ratio method and the previous regression model.

The Construction of GIS-based Flood Risk Area Layer Considering River Bight (하천 만곡부를 고려한 GIS 기반 침수지역 레이어 구축)

  • Lee, Geun-Sang;Yu, Byeong-Hyeok;Park, Jin-Hyeog;Lee, Eul-Rae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Rapid visualization of flood area of downstream according to the dam effluent in flood season is very important in dam management works. Overlay zone of river bight should be removed to represent flood area efficiently based on flood stage which was modeled in river channels. This study applied drainage enforcement algorithm to visualize flood area considering river bight by coupling Coordinate Operation System for Flood control In Multi-reservoir (COSFIM) and Flood Wave routing model (FLDWAV). The drainage enforcement algorithm is a kind of interpolation which gives to advantage into hydrological process studies by removing spurious sinks of terrain in automatic drainage algorithm. This study presented mapping technique of flood area layer considering river bight in Namgang-Dam downstream, and developed system based on Arcobject component to execute this process automatically. Automatic extraction system of flood area layer could save time-consuming efficiently in flood inundation visualization work which was propelled based on large volume data. Also, flood area layer by coupling with IKONOS satellite image presented real information in flood disaster works.

  • PDF