• Title/Summary/Keyword: Drainage Area

Search Result 1,004, Processing Time 0.037 seconds

Operation Strategy of Groundwater Dam Using Estimation Technique of Groundwater Level (지하수위 예측기법을 활용한 지하댐 운영전략)

  • Bu, Seong-An;Sin, Sang-Mun;Choe, Yong-Seon;Park, Jae-Hyeon;Jeong, Gyo-Cheol;Park, Chang-Geun
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.236-245
    • /
    • 2006
  • Among a number of methodologies for developing groundwater supply to overcome drought events reported in the research community, an accurate estimation of the groundwater level is an important initial issue to provide an efficient method for operating groundwater. The primary objective of this paper is to develop an advanced prediction model for the groundwater level in the catchment area of the Ssangcheon groundwater dam using precipitation based period dividing algorithm and response surface methodology (RSM). A numerical example clearly shows that the proposed method can effectively forecast groundwater level in terms of correlation coefficient ($R^2$) in the upstream part of the Ssangcheon groundwater dam.

  • PDF

Comparison of the Indications and Treatment Results of Burr-Hole Drainage at the Maximal Thickness Area versus Twist-Drill Craniostomy at the Pre-Coronal Point for the Evacuation of Symptomatic Chronic Subdural Hematomas

  • Kim, Gi Hun;Kim, Bum-Tae;Im, Soo-Bin;Hwang, Sun-Chul;Jeong, Je Hoon;Shin, Dong-Seong
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.3
    • /
    • pp.243-247
    • /
    • 2014
  • Objective : To analyze the clinical data and surgical results from symptomatic chronic subdural hematoma (CSDH) patients who underwent burr-hole drainage (BHD) at the maximal thickness area and twist-drill craniostomy (TDC) at the precoronal point. Methods : We analyzed data from 65 symptomatic CSDH patients who underwent TDC at the pre-coronal point or BHD at the maximal thickness area. For TDC, we defined the pre-coronal point to be 1 cm anterior to the coronal suture at the level of the superior temporal line. TDC was performed in patients with CSDH that extended beyond the coronal suture, as confirmed by preoperative CT scans. Medical records, radiological findings, and clinical performance were reviewed and analyzed. Results : Of the 65 CSDH patients, 13/17 (76.4%) with BHD and 42/48 (87.5%) with TDC showed improved clinical performance and radiological findings after surgery. Catheter failure was seen in 1/48 (2.4%) cases of TDC. Five patients (29.4%) in the BHD group and four patients (8.33%) in the TDC group underwent reoperations due to remaining hematomas, and they improved with a second operation, BHD or TDC. Conclusion : Both BHD at the maximal thickness area and TDC at the pre-coronal point are safe and effective drainage methods for symptomatic CSDHs with reasonable indications.

A Study for selecting the Highway Sites' Best Management Practice for Nonpoint Source Pollution (고속도로 현장별 비점오염 저감시설 선정방안 연구)

  • Lee, Yong-Bok;Choi, Sang-Il;Park, Kye-Su;Seong, Il-Jong;Jung, Sun-Kook
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.857-866
    • /
    • 2011
  • This research categorized EIA target highways into following three types in order to minimize non-point source pollution from highway runoff. 1. Big drainage basin. 2. Small drainage basin. 3. Bridge section. The Natural, Filter and Swirl-Type devices were evaluated in terms of removal efficiency of TSS, BOD, COD, T-N, T-P, compatibility of site selection, economic feasibility, and maintenance convenience through which the final BMP was selected. According to the removal efficiency result, the area of Big and Small Drainage basin and bridge section had higher removal efficiency with natural facility than that of the Filter or Swirl-Type device. To make appropriate selection of highways'BMP for non-point source pollution, this study will aim to contribute to building more environmentally friendly highways by proposing the selection process that is made of 5 stages. 1. Selecting the target drainage basin. 2. Selecting the land for the mitigation facility. 3. Analysing the ease of maintenance. 4. Technically evaluating each installation. 5. Evaluating the effective implementation methods.

A Study on mine drainage characteristcs as abandoned Coal mine in Gyeongsang province (경상도 일대의 폐탄광 갱내수의 수질 특성 연구)

  • Jung, Young-Kook;Hong, Ji-Hye;Lee, Dong-Jin;Kim, Jeong-Phill;Kim, Dae-Gi;Joo, Sang-Don
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1440-1445
    • /
    • 2008
  • There are 21 abondoned coal mines drained out mine water in gyeong sang do. We monitored the water quality of 31 mine drainage from 1995. The most of mine drainage was neutral as the average pH was 6.22 and Fe, Mn, Al concentration was below 10mg/L. The result showed the tendency of decreasing of flow and metal concentration. The highest Mn concentration was detected in bonghwa area and the hightest Fe concentration was detected in munkyung area. It means that the water quality is closly related to geological features.

  • PDF

Drainage Analysis for the Anyang-cheon Upper-watershed Management Planning (유역관리계획수립(流域管理計劃樹立)에 관(關)한 기초적(基礎的) 연구(硏究))

  • Woo, Bo Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.42 no.1
    • /
    • pp.39-54
    • /
    • 1979
  • Such stream characteristics as the numbers, lengths, orders of stream channels, and drainage density are the essential elements for the analysis of drainages in planning of watershed management in a drainage basin. The drainage net is the pattern of tributaries and master streams in a drainage basin as declineated on a planimetric map. Stream order is a measure of the position of a stream in the hierarchy of tributaries. Density of the drainage is given by the quotient of the cumulative length of stream and the total drainage area. Drainage density then is simply a length per unit of area. In this study, the Anyang-cheon upper-watershed is selected for the survey and analysis of the stream system and drainage density in view point of the useful collection of data for effective watershed management planning. The Anyang-cheon upper-watershed is consisted of about 12,600 hectars of drainage area including the 13 Sub-stream. Total length of the Stream (as described in the Stream Law) in the survey area is measured as much as 71.2km, and that of the Small-stream as descrived in the Saemaul Stream Survey Book (1972) is calculated as 43,010 meters. Besides of this lengths, measured about 43,410 meters of the Small-stream and about 71,900 meters of the Torrential valley through this study. The range of the drainage density among the 13 Sub-streams having sub-watershed is analysed as from 14.79 to 24.10, and average value of drainage density in the entire watershed is calculated as 18.21 in case of including the length of the Torrential valley and 12.50 in case of excluding the same. It is required that the standard classification system in classifing for the characteristics of identification among the Stream, Sub-stream, Small-stream, Torrent, and Torrential valley must be satisfied through joint study of the authorities concerned.

  • PDF

A Study on the Evaluation Criteria of Drainage Performance by Measurement of Horizontal Drainage Flow Rate by Damage Degree by Interior Model Construction Experiment (실내 모형토조실험에 의한 손상도별 수평배수공 유출량 측정을 통한 배수성능 평가 기준 제안)

  • Suhwan Choi;Donghyuk Lee;Jeonghoon Shim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.1
    • /
    • pp.45-50
    • /
    • 2023
  • In order to prevent slope disasters caused by rainfall, it is very important to quickly exclude rainfall. In Korea, horizontal drainage holes with excellent economic feasibility and construction performance are generally applied as a method to lower the underground water level. However, horizontal drainage holes constructed on the site are often uniformly constructed regardless of the presence or absence of other water or ground conditions, and it is often difficult to expect drainage performance of horizontal drainage holes due to poor maintenance. In this study, an artificial ground was created using model construction and horizontal drainage experiments were conducted to measure the amount of horizontal drainage drain in a certain amount of control area 0%, 25%, 50%, 75%, and an evaluation table (draft) that can quantitatively evaluate horizontal drainage based on measurements and design documents is proposed as basic data.

Assessing the Land Potential Utilization Status of Watershed Area

  • Malini, Ponnusarny;Park, Ki-Youn;Lee, Hye-Suk;Yoo, Hwan-Hee
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.151-152
    • /
    • 2008
  • The planning and management of the watershed environment require huge amount of information regarding almost all aspects of natural and manmade features of the area. Until lately this study could be achieved through days of exhaustive surveys map generation and tedious calculations. Remote sensing and GIS provides huge temporal database for an area and GIS provides the powerful tool for spatial and non-spatial analysis of remotely sensed data. The paper highlights the assessment of land potentiality using weighed overlay analysis with drainage density, soil, slope and lineament, LULC map was used to identify the utilization area of the watershed. The arithmetic overlay analysis was performed with potential and utilization layer to assess the availability of land for the future development.

  • PDF

Geochemical transport and water-sediment partitioning of heavy metals in acid mine drainage, Kwangyang Au-Ag mine area, Korea

  • Jung, Hun-Bok;Yun, Seong-Taek;Kwon, Jang-Soon;Lee, Pyeong-Koo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.409-412
    • /
    • 2003
  • Total extraction of stream sediments in the Kwangyang mine area shows their significant pollution with most trace metals such as Cr, Co, Fe, Pb, Cu, Ni, Zn and Cd, due to sulfide oxidation in waste dumps. Calculations of enrichment factor shows that Chonam-ri creek sediments are more severely contaminated than Sagok-ri sediments. Using the weak acid (0.1N HCl) extraction and sequential extraction techniques, the transport and sediment-water partitioning of heavy metals in mine drainage were examined for contaminated sediments in the Chonam-ri and Sagok-ri creeks of the Kwangyang Au-Ag mine area. Calculated distribution coefficient (Kd) generally decreases in the order of Pb $\geq$Al > Cu > Mn > Zn > Co > Ni $\geq$ Cd. Sequential extraction of Chonam-ri creek sediments shows that among non-residual fractions the Fe-Mn oxide fraction is most abundant for most of the metals. This indicates that precipitation of Fe hydroxides plays an important role in regulating heavy metal concentrations in water, as shown by field observations.

  • PDF

Impact of Bidirectional Interaction between Sewer and Surface flow on 2011 Urban Flooding in Sadang stream watershed, Korea

  • Pakdimanivong, Mary;Kim, Yeonsu;Jung, Kwansue;Li, Heng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.397-397
    • /
    • 2015
  • The frequency of urban floods is recently increased as a consequence of climate change and haphazard development in urban area. To mitigate and prevent the flood damage, we generally utilized a numerical model to investigate the causes and risk of urban flood. Contrary to general flood inundation model simulating only the surface flow, the model needs to consider flow of the sewer network system like SWMM and ILLUDAS. However, this kind of model can not consider the interaction between the surface flow and drainage network. Therefore, we tried to evaluate the impact of bidirectional interaction between sewer and surface flow in urban flooding analysis based on simulations using the quasi-interacted model and the interacted model. As a general quasi-interacted model, SWMM5 and FLUMEN are utilized to analyze the flow of drainage network and simulate the inundation area, respectively. Then, FLO-2D is introduced to consider the interaction between the surface flow and sewer system. The two method applied to the biggest flood event occurred in July 2011 in Sadang area, South Korea. Based on the comparison with observation data, we confirmed that the model considering the interaction the sewer network and surface flow, showed a good agreement than the quasi-interacted model.

  • PDF

Optimal Volume Estimation for Non-point Source Control Retention Considering Spatio-Temporal Variation of Land Surface (지표면의 시공간적 변화를 고려한 비점오염원 저감 저류지 최적용량산정)

  • Choi, Daegyu;Kim, Jin Kwan;Lee, Jae Kwan;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.9-18
    • /
    • 2011
  • In this study the optimal volume for non-point source control retention is estimated considering spatio-temporal variation of land surface. The 3-parameter mixed exponential probability density function is used to represent the statistical properties of rainfall events, and NRCS-CN method is applied as rainfall-runoff transformation. The catchment drainage area is divided into individual $30m{\times}30m$ cells, and runoff curve number is estimated at each cell. Using the derived probability density function theory, the stormwater probability density function at each cell is derived from the rainfall probability density function and NRCS-CN rainfall-runoff transformation. Considering the antecedent soil moisture condition at each cell and the spatial variation of CN value at the whole catchment drainage area, the ensemble stormwater capture curve is established to estimate the optimal volume for an non-point source control retention. The comparison between spatio-temporally varied land surface and constant land surface is presented as a case study for a urban drainage area.