• Title/Summary/Keyword: Drain method

Search Result 521, Processing Time 0.027 seconds

A Case Study on Test Embankment using Vertical Drain Method at Incheon International Airport (인천국제공항 수직배수공법 시험시공 사례연구)

  • 권오현
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.06a
    • /
    • pp.33-44
    • /
    • 2001
  • The generally known vertical drain methods for improvement of soft ground are Sand Drain, Sand Compaction Pile, Plastic Drain Board, and Pack Drain. Recently, Plastic Drain Board method application in soft ground is widely used. In this case study, it is compared with each other vertical drain methods from the results of monitorning and test embankment. The results of the analysis and the study show that Plastic Drain Board method is relatively acceptable as vertical drain method.

  • PDF

A Case analysis for Suction Drain method on deep soft ground (대심도 연약지반에 적용한 Suction Drain 공법의 수치해석 사례)

  • Kim, Sung-Ho;Han, Sang-Jae;Ahn, Dong-Wook;Kim, Byung-Il;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1126-1131
    • /
    • 2009
  • Suction Drain Method is soft ground improvement technique, in which a vacuum pressure can be directly applied to the Vertical Drain Board to promote consolidation and strengthening the soft ground. This method does not require a surcharge load, different to embankment or vertical drain method. In this study, Using Suction-CAIN program, which optimize th Suction Drain method, estimate validity Suction Drain method on deep soft ground

  • PDF

Finite element analysis for the difference of displacement behavior developed from suction drain method and vertical drain method (Suction 연직배수 공법과 PDB 공법의 변위거동 차이에 대한 유한 요소 해석)

  • Kim, Ki-Nyeon;Ahan, Dong-Wook;Han, Sang-Jae;Jung, Seung-Yong;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1165-1172
    • /
    • 2006
  • In this study, an aspect of settlement, developed from different ground improvement method like suction drain method using vacuum pressure and vertical drain method using overburden pressure, was compared each other. In order to analyze settlement tendency of each method exactly, the finite element analysis program was used. The analyses of vertical settlement and lateral displacement for suction drain method and vertical drain method were conducted independently during the solving stage. The initial condition of drainage zone was fixed with 25m depth and 21m width. After the program analyses, the settlement condition had a different tendency with the ground improvement method. Especially, in the results of vertical drain method, the disparity of settlement between the middle of improved zone and unimproved zone. In the case of suction drain method, however, the difference of settlement was smaller than that of vertical drain method.

  • PDF

A study on evaluation of duplex loading pressure in Suction Drain Method (Suction Drain 공법에서 양방향 압력재하에 의한 효율 평가에 관한 연구)

  • Ahn, Dong-Wook;Chae, Kwang-Seok;Han, Sang-Jae;Yoon, Myung-Seok;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1256-1263
    • /
    • 2010
  • Suction Drain Method is soft ground improvement technique, in which a vacuum pressure can be directly applied to the Vertical Drain Board to promote consolidation and strengthening the soft ground. This method does not require a surcharge load, different to embankment or Preloading Method. In this study, ground improvement efficiency of suction drain method was estimated when duplex loading pressure with vacuum and pressure. During suction drain method process, surface settlement and pore pressure were monitored, and cone resistance test as well as water content were also measured after the completion of Suction Drain Method treatment.

  • PDF

A Study on the Spacing between the Sand Drain Wells (모래기둥의 설치 간격에 관한 연구)

  • 김홍택
    • Geotechnical Engineering
    • /
    • v.8 no.1
    • /
    • pp.67-80
    • /
    • 1992
  • An analytical solution method is presented to determine the radius of influence circle of a sand 4rain well(i.e., spacing between the sand drain wells) required in the design under various types of construction loading. The proposed method deals with a sand drain well having a smeared zone at the periphery of the drain well as well as flow resistance in the drain well. The method proposed in the present study is made based on the modification of 01son's solution which deals with a single ramp loading without considering smeard zone effect as well as flow resistance in the drain well. Further, the effects of various design paramenters on the drain spacing are analyzed using the proposed method.

  • PDF

The Discharge Capacity Test & Vertical Drain Adoption Considering the Ground Condition (지반특성을 고려한 연직배수재의 통수능 시험 및 선정)

  • Jung, Hun-Chul;Shin, Kyung-Ha;Jung, Ki-Moon;Huh, Jip
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.373-382
    • /
    • 2007
  • In the vertical drain method, discharge capacity is generally one of the most important factor which affect on the estimation of the drain efficiency. However, adopting the drain considering discharge capacity only is not sufficiently considered method so that systematic criteria for adoption is necessary to choose the most suitable drain. Therefore, this study represents the application method considering behavior of the ground and vertical drain which is coupled together and ground improvement efficiency analyzing various cases of discharge capacity test performed in the recent soft ground improvement projects. According to the analysis, most drains tend to satisfy the required discharge capacity. It presents that deformed shape of the drains and well resistance estimation along the ground settlement, improvement efficiency by water content ratio along the depth and shear strength obtained after ground improvement should be considered altogether with the discharge capacity to select the proper drain. Also, appropriate adoption of drain material considering the ground condition is vital through analyzing the field measured data and comparing the result of the discharge capacity test as various vertical drain materials are being constructed continuously.

  • PDF

An Experimental Study on the Effect of Consolidation Improvement Using Horizontal Drains (수평배수재를 이용한 압밀개량효과에 대한 실험연구)

  • 김지용;김정기;장연수;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.33-40
    • /
    • 2000
  • The horizontal drain method is one of the soil improvement methods in reclamation works using dredged soils. In this method, plastic drain boards are installed horizontally in the ground, and a seepage pressure or negative pressure is applied through one end of these drains. In this study, a basic consolidation test using horizontal drains was conducted to investigate the effectiveness of this method. The configuration of soil box which was used in this test is 100cm(B)${\times}$100cm(L)${\times}$85cm(H). The drain board was reduced to 25mm${\times}$5mm. The variations in settlement and volume of drain water during the consolidation process were measured, and the distribution of water content and the transpormation of horizontal drain were investigated.

  • PDF

The Calculation Method of the Breakdown Voltage for the Drain Region with the Spherical Structure in High Voltage Analog CMOS (Spherical 구조를 갖는 고전압용 Analog CMOS의 Drain 역방향 항복전압의 계산 방법)

  • Lee, Un Gu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1255-1259
    • /
    • 2013
  • A calculation method of the breakdown voltage for the Drain region with the spherical structure in high voltage analog CMOS is proposed. The Drain depletion region is divided into many sub-regions and the doping concentration of each sub-region is assumed to be constant. The field in each sub-region is calculated by the integration of the net charge and the breakdown voltage is calculated using the ionization integral method. The breakdown voltage calculated using the proposed method shows the maximum relative error of 3.3% compared with the result of the 2-dimensional device simulation using BANDIS.