• Title/Summary/Keyword: Drain Rate

Search Result 187, Processing Time 0.026 seconds

Delayed Sternal Closure Using a Vacuum-Assisted Closure System in Adult Cardiac Surgery

  • Hyun Ah Lim;Jinwon Shin;Min Seop Jo;Yong Jin Chang;Deog Gon Cho;Hyung Tae Sim
    • Journal of Chest Surgery
    • /
    • v.56 no.3
    • /
    • pp.206-212
    • /
    • 2023
  • Background: Delayed sternal closure (DSC) is a useful option for patients with intractable bleeding and hemodynamic instability due to prolonged cardiopulmonary bypass and a preoperative bleeding tendency. Vacuum-assisted closure (VAC) has been widely used for sternal wound problems, but only rarely for DSC, and its efficacy for mediastinal drainage immediately after cardiac surgery has not been well established. Therefore, we evaluated the usefulness of DSC using VAC in adult cardiac surgery. Methods: We analyzed 33 patients who underwent DSC using VAC from January 2017 to July 2022. After packing sterile gauze around the heart surface and great vessels, VAC was applied directly without sternal self-retaining retractors and mediastinal drain tubes. Results: Twenty-one patients (63.6%) underwent emergency surgery for conditions including type A acute aortic dissection (n=13), and 8 patients (24.2%) received postoperative extracorporeal membrane oxygenation support. Intractable bleeding (n=25) was the most common reason for an open sternum. The median duration of open sternum was 2 days (interquartile range [25th-75th pertentiles], 2-3.25 days) and 9 patients underwent VAC application more than once. The overall in-hospital mortality rate was 27.3%. Superficial wound problems occurred in 10 patients (30.3%), and there were no deep sternal wound infections. Conclusion: For patients with an open sternum, VAC alone, which is effective for mediastinal drainage and cardiac decompression, had an acceptable superficial wound infection rate and no deep sternal wound infections. In adult cardiac surgery, DSC using VAC may be useful in patients with intractable bleeding or unstable hemodynamics with myocardial edema.

Crop Analysis through Growth Survey after Wintering of Winter Annual Forages Grown from 2014 to 2015 (2014 / 2015년 동계 사료작물의 월동 후 생육조사를 통한 작황 분석)

  • Kim, Young-Jin;Kim, Won-Ho;Lee, Sang-Hoon;Park, Hyung-Soo;Kim, Ki-Yong;Ji, Hee-Chung;Choi, Ki-Choon;Lee, Sang-Hak;Jung, Jeong-Sung;Kim, Ji-Hea;Hwang, Tae-Young;Lee, Ki-Won;Kim, Hyeon-Shup;Choi, Gi-Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.4
    • /
    • pp.309-315
    • /
    • 2015
  • In order to identify the causes of various problems related to forage crop growth, such as winter survival, coldness, rainfall, drought etc., and to provide basic data for the stable production and supply of forage year round, we performed a growth survey after the wintering of winter forage crops grown from mid-Sep. 2014 to late-Feb. 2015. The growth of winter forage crops after wintering in the country was generally bad. As shown in the regional distribution in the country, regions with 80% or higher winter survival rates comprised 66%, regions with 79 to 50% winter survival comprised 24.9% and regions with less than 50% winter survival comprised 9.1%. In conclusion, the average winter survival rate was 79% in the country. Winter survival rate and coverage rate after the wintering of winter forage crops under installed drain channels in paddy fields were good at 83% and 80%, respectively. However, the rates without installed drain channels were bad at 67% and 66%, respectively. It was predicted that the crop production of winter forage crops was reduced by 10-15% in Gangwon, Chungbuk, Chungnam, Gyeongnam and Jeonnam regions, reduced by 30% in Gyeonggi, Gyeongbuk and Jeonbuk regions and reduced overall by approximately 19% nationwide.

2-D Axisymmetric Non-linear Finite Strain Consolidation Model Considering Self-weight Consolidation of Dredged Soil (준설매립지반의 자중압밀을 고려한 2차원 축대칭 비선형 유한변형 압밀 모델)

  • Kwak, Tae-Hoon;Lee, Dong-Seop;Lim, Jee-Hee;Stark, T.D.;Choi, Eun-Seok;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.8
    • /
    • pp.5-19
    • /
    • 2012
  • Vertical drains along with the preloading technique have been commonly used to enhance the consolidation rate of dredged placement formation. In practice, vertical drains are usually installed in the process of self-weight consolidation of a dredged soil deposit because this process takes considerable time to be completed, which makes conventional analytical or numerical models difficult to quantify the consolidation behavior. In this paper, we propose a governing partial differential equation and develop a numerical model for 2-D axisymmetric non-linear finite strain consolidation considering self-weight consolidation to predict the behavior of a vertical drain in the dredged placement foundation which is installed during the self-weight consolidation. In order to verify the developed model in this paper, results of the numerical analysis are compared with that of the lab-scaled self-weight consolidation test. In addition, the model verification has been carried out by comparing with the simplified method. The comparisons show that the developed model can properly simulate the consolidation of the dredged placement formation with the vertical drains installed during the self-weight consolidation. Finally, the effect of construction schedule of vertical drains and of pre-loading during the self-weight consolidation is examined by simulating an imaginary dredged material placement site with a thickness of 10 m and 20 m, respectively. This simulation infers the applicability of the proposed method in this research for designing a soil improvement in a soft dredged deposit when vertical drains and pre-loading are implemented before the self-weight consolidation ceases.

Assessment of Field Application of Contaminated Sediment Removal Efficiency Using PVDF Combined Hybrid Tunnel Drainage (PVDF(Polyvinylidene Fluoride) 필름형 트랜스듀서 하이브리드 터널배수재에 대한 오염퇴적물 제거효율의 현장 적용성 평가)

  • Xin, Zhen-Hua;Moon, Jun-Ho;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.513-519
    • /
    • 2019
  • Typically, contaminated sediments cause clogging of the drain pipe, which increases the residual water pressure in the drain pipe; this study constructed a system for improving drainage efficiency of tunnels by reducing physical and chemical obstructions through ultrasonic energy generated by a PVDF film. The developed hybrid drainage system utilized a PVDF material film fused with an existing drainage tunnel and maintenance system resulting in the ability to initialize the reverse piezoelectric effect, which was evaluated through an on site application. In order to investigate the maintenance performance of the tunnel drainage system, contaminated sediments were simulated in a drainage pipe to test the effect of ultrasonic conditions on drainage efficiency in the laboratory. As a result of applying the developed portable equipment, the ultrasonic energy was generated for about 20 minutes resulting in a reduction of 74.62% of the contaminated sediments and improving drainage efficiency. From the tunnel, acoustic pressure measurements were taken to calculate the response rate while taking into account the laboratory results. In addition, PVDF film was attached to the transverse and longitudinal side of the drainage pipes where contaminated sediments occur most often in the field tunnel. these calculations show contaminant removal was 90% effective.

The Numerical Study on Individual Vacuum Seepage Consolidation Method with Flexible Well Point (연성 Well Point를 적용한 개별진공 침투압밀공법에 관한 해석적 연구)

  • Kim, Byung-Il;Hong, Kang-Han;Kim, Young-Seon;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.11-21
    • /
    • 2022
  • In this study, the individual vacuum seepage consolidation method, a new soft ground improvement method, was developed to supplement the conventional suction drain method (individual vacuum preloading method) and the geotechnical behavior was predicted through numerical analysis. If the individual vacuum seepage consolidation method applied, the effect of accelerating settlement and increasing the amount of settlement was high when the aquifer was located in the middle or at the bottom of the layer to the target improvement layer. It was found that the pumping amount in the aquifer does not affect the settlement behavior when it exceeds a certain level. Even vacuum pumping wells were installed in various locations, such as inside or outside of the embankment, the difference in settlement and horizontal displacement was insignificant. In addition, it was predicted that the settlement rate was the fastest and the horizontal displacement (inward) was large when both methods were carried out at the same time. Since this method can reach the target settlement amount very quickly, it was confirmed that it is possible to increase the spacing of vertical drain, thereby securing economic feasibility.

Non-linear Finite Strain Consolidation of Ultra-soft Soil Formation Considering Radial Drainage (방사방향 배수를 고려한 초연약 지반의 비선형 유한변형 자중압밀 거동 분석)

  • An, Yong-Hoon;Kwak, Tae-Hoon;Lee, Chul-Ho;Choi, Hang-Seok;Choi, Eun-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.17-28
    • /
    • 2010
  • Vertical drains are commonly used to accelerate the consolidation process of soft soils, such as dredged materials, because they additionally provide a radial drainage path in a deep soil deposit. In practice, vertical drains are commonly installed in the process of self-weight consolidation of a dredged soil deposit. The absence of an appropriate analysis tool for this situation makes it substantially difficult to estimate self-weight consolidation behavior considering both vertical and radial drainage. In this paper, a new method has been proposed to take into account both vertical and radial drainage conditions during nonlinear finite strain self-weight consolidation of dredged soil deposits. For 1-D nonlinear finite strain consolidation in the vertical direction, the Morris (2002) theory and the PSDDF analysis are adopted, respectively. On the other hand, to consider the radial drainage, Barron's vertical drain theory (1948) is used. The overall average degree of self-weight consolidation of the dredged soil is estimated using the Carillo formula (1942), in which both vertical and radial drainage are assembled together. A series of large-scale self-weight consolidation experiments being equipped with a vertical drain have been carried out to verify the analysis method proposed in this paper. The results of the new analysis method were generally in agreement with those of the experiments.

Improvement of Consolidation Characteristics around PVD Using the Thermal Method (열적 방법을 이용한 연직배수재 주변의 압밀특성 연구)

  • Bergado, Dennes T.;Shin, Eun-Chul;Park, Jeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.5-11
    • /
    • 2007
  • This paper is to investigate the removal of the smear at elevated temperatures. This study utilized both small cylinder cell and large consolidometer apparatus to investigate the combination of PVD with heat and without heat. Two types of heaters are used in this study. The heater drain made of copper tube is used for all tests except large consolidometer and flexible wire heater is used for large consolidometer. Specimens demonstrated volume contraction upon heat and without heat. This contraction is dependent on temperature magnitude. When the specimen is heated, the magnitude of settlements is higher and rate of consolidation is faster. After treatment using PVD combined without heat and with heat for undisturbed specimens the $C_h$ values obtained were $3.45m^2/yr$ and $3.83m^2/yr$, respectively, from $3.2m^2/yr$ before treatment. The $K_h/K_s$ ratios were 3 for the specimen without heat and 2 for the specimen with heat. Similarly, in reconstituted specimens without heat and with heat, the $C_h$ values were $2.1m^2/yr$ and $2.5m^2/yr$ with $K_h/K_s$ ratios of 1.75 and 1.5, respectively.

Comparative Study on Laboratory Experimental Results for Removal Efficiencies of Heavy Metals in AMD & ARD using Natural Materials (천연물질을 이용한 AMD및 ARD내의 중금속 저감효율 실내실험 결과 비교연구)

  • 최정찬;이민희
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.133-142
    • /
    • 2004
  • The purpose of this study is to evaluate a laboratory test on arsenic removal effciency for ARD(Acid Rock Drain-age) using limestone and apatite, and on heavy metals removal efficiencies for AMD(Acid Mine Drainage) using apatite and fish bone. As a result of the laboratory test, pH, arsenic removal rate of limestone & apatite are inversely proportional to flow rates and apatite removes 100% of arsenic while limestone removes 37% of arsenic at 0.6$m{ell}$/min/kg flow rate in case of ARD treatment. And the dissolution amount of apatite is twenty five times higher than that of limestone. In case of AMD treatment, fish bone shows higher dissolution rate than apatite, and pH of outlet water reacted with fish bone is higher than that reacted with apatite. The heavy metal removal rates of fish bone are also higher than that of apatite except arsenic removal rate. The precipitate resulted from fish bone reaction with AMD seems to be biological sludge type while that resulted from apatite with AMD is inorganic solid which can settle easily compared with the biological sludge and can be cemented by gypsum. As the results, apatite can be used as a precipitant for the polluted mine waters showing wide range of pH and fish bone can be used for highly contaminated AMD.

A Feasibility Study on GMC (Geo-Multicell-Composite) of the Leachate Collection System in Landfill (폐기물 매립시설의 배수층 및 보호층으로서의 Geo-Multicell-Composite(GMC)의 적합성에 관한 연구)

  • Jung, Sung-Hoon;Oh, Seungjin;Oh, Minah;Kim, Joonha;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.67-76
    • /
    • 2013
  • Landfill require special care due to the dangers of nearby surface water and underground water pollution caused by leakage of leachate. The leachate does not leak due to the installation of the geomembrane but sharp wastes or landfill equipment can damage the geomembrane and therefore a means of protecting the geomembrane is required. In Korea, in accordance with the waste control act being modified in 1999, protecting the geosynthetics liner on top of the slope of landfill and installing a drainage layer to fluently drain leachate became mandatory, and technologies are being researched to both protect the geomembrane and quickly drain leachate simultaneously. Therefore, this research has its purpose in studying the drainage functions of leachate and protection functions of the geomembrane in order to examine the application possibilities of Geo-Multicell-Composite (GMC) as a Leachate Collection Removal and Protection System (LCRPs) at the slope on top of the geomembrane of landfill by observing methods of inserting filler with high-quality water permeability at the drainage net. GMC's horizontal permeability coefficient is $8.0{\times}10^{-4}m^2/s$ to legal standards satisfeid. Also crash gravel used as filler respected by vertical permeability is 5.0 cm/s, embroidering puncture strength 140.2 kgf. A result of storm drain using artificial rain in GMC model facility, maxinum flow rate of 1,120 L/hr even spray without surface runoff was about 92~97% penetration. Further study, instead of crash gravel used as a filler, such as using recycled aggregate utilization increases and the resulting construction cost is expected to savings.

Analysis and Improvement Practise of Drainage Problem on Soil Profile at the Golf Course Fairway (골프코스 페어웨이 지반 토양의 배수불량 원인과 개선방안)

  • Lee, Jung-Ho;Jung, Gi-Rai;Lee, Jong-Min;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.2
    • /
    • pp.129-134
    • /
    • 2012
  • Research was focused on the improvement of poor drainage problems on golf course fairway which had not been performed soil test or properly amended during the course construction. The analysis of the drainage problem basically was caused by a deterioration of soil physical properties by the top layer compaction. The soil hardness reached about 3,000 Kpa around 5~6 cm of soil profile. The slow infiltration speed to subsoil by the compaction was caused directly a poor drainage capacity. However, the properly amended sand soil showed an apparent value of 1,500 Kpa through the subsoil. The water content test showed a similar result that higher rate of 20~30% and ideal rate of 8~12% at poor drainage area and successfully amended area, respectively. However, an imported topsoil media which had higher content of silt and clay from a trans-planted sod had made a heterogeneous soil profile and that caused a poor drain capacity by a low infiltration rate. Those drainage problems triggered to buildup a reduced soil layer by poor soil gas exchange. The soil environment of deoxidation enhanced anaerobic microbial population and induced methane gas build-up to 55 ppm, and that resulted an adverse effect on turf growth by root growth retardation, consequently.