• Title/Summary/Keyword: Drain

Search Result 2,244, Processing Time 0.027 seconds

Comparison of Drain-Induced-Barrier-Lowering (DIBL) Effect by Different Drain Engineering

  • Choi, Byoung-Seon;Choi, Pyung-Ho;Choi, Byoung-Deog
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.342-343
    • /
    • 2012
  • We studied the Drain-Induced-Barrier-Lowering (DIBL) effect by different drain engineering. One other drain engineering is symmetric source-drain n-channel MOSFETs (SSD NMOSs), the other drain engineering is asymmetric source-drain n-channel MOSFETs (ASD NMOSs). Devices were fabricated using state of art 40 nm dynamic-random-access-memory (DRAM) technology. These devices have different modes which are deep drain junction mode in SSD NMOSs and shallow drain junction mode in ASD NMOSs. The shallow drain junction mode means that drain is only Lightly-Doped-Drain (LDD). The deep drain junction mode means that drain have same process with source. The threshold voltage gap between low drain voltage ($V_D$=0.05V) and high drain voltage ($V_D$=3V) is 0.088V in shallow drain junction mode and 0.615V in deep drain junction mode at $0.16{\mu}m$ of gate length. The DIBL coefficients are 26.5 mV/V in shallow drain junction mode and 205.7 mV/V in deep drain junction mode. These experimental results present that DIBL effect is higher in deep drain junction mode than shallow drain junction mode. These results are caused that ASD NMOSs have low drain doping level and low lateral electric field.

  • PDF

A Case Study on Test Embankment using Vertical Drain Method at Incheon International Airport (인천국제공항 수직배수공법 시험시공 사례연구)

  • 권오현
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.06a
    • /
    • pp.33-44
    • /
    • 2001
  • The generally known vertical drain methods for improvement of soft ground are Sand Drain, Sand Compaction Pile, Plastic Drain Board, and Pack Drain. Recently, Plastic Drain Board method application in soft ground is widely used. In this case study, it is compared with each other vertical drain methods from the results of monitorning and test embankment. The results of the analysis and the study show that Plastic Drain Board method is relatively acceptable as vertical drain method.

  • PDF

The Application to the New Drain Materials for Soft Ground Improvement (연약지반 개량을 위한 신배수재의 적용성에 관한 비교 실험)

  • 김병일;이동현;양상호;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.761-766
    • /
    • 2003
  • In environmental and economical views Plastic Board Drain(PBD) has many problems which is generally used in improving soft grounds. In order to improve these, Rags drain and Sponge drain are developed in this study, and the application to drains is presented though comparing with PDB and Sand drain In consolidation effects. Test results show that the consolidation effects, including consolidation rate and stregth, increase in order of Sand and Rags, PDB and Sponge drain.

  • PDF

Effects of Thermal-Carrier Heat Conduction upon the Carrier Transport and the Drain Current Characteristics of Submicron GaAs MESFETs

  • Jyegal, Jang
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1997.11a
    • /
    • pp.451-462
    • /
    • 1997
  • A 2-dimensional numerical analysis is presented for thermal-electron heat conduction effects upon the electron transport and the drain current-voltage characteristics of submicron GaAs MESFETs, based on the use of a nonstationary hydrodynamic transport model. It is shown that for submicron GaAs MESFETs, electron heat conduction effects are significant on their internal electronic properties and also drain current-voltage characteristics. Due to electron heat conduction effects, the electron energy is greatly one-djmensionalized over the entire device region. Also, the drain current decreases continuously with increasing thermal conductivity in the saturation region of large drain voltages above 1 V. However, the opposite trend is observed in the linear region of small drain voltages below 1 V. Accordingly, for a large thermal conductivity, negative differential resistance drain current characteristics are observed with a pronounced peak of current at the drain voltage of 1 V. On the contrary, for zero thermal conductivity, a Gunn oscillation characteristic is observed at drain voltages above 2 V under a zero gate bias condition.

  • PDF

Geotextiles Horizontal Drain between Earth Fills and Natural Soft Ground (토목섬유를 사용한 무처리 연약지반과 성토사이의 수평배수층)

  • Lee, Hyoung-Kyu;Kong, Kil-Yong;Kim, Hyun-Tae
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.129-138
    • /
    • 2002
  • This paper presents a study on the discharge capacity of geotextiles as a horizontal drain layer placed between the layers of earth fill and natural soft ground. Required discharge capacity of geotextiles as drain layers estimated by consolidation analysis is proportional to the consolidation coefficient of the ground soils and the width of the earth fills. The field discharge capacity of the geotextiles are measured by the hydraulic transmissivity test. And the results show wide variation according to the material characteristics of geotextiles, water content of the soils, vertical pressure, and etc. For the short horizontal drain length, geotextile filter mat can be used for the horizontal drain layer. And f3r the long drain($25{\sim}55m$), it is used for the drain together with Bord Drain.

A Case analysis for Suction Drain method on deep soft ground (대심도 연약지반에 적용한 Suction Drain 공법의 수치해석 사례)

  • Kim, Sung-Ho;Han, Sang-Jae;Ahn, Dong-Wook;Kim, Byung-Il;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1126-1131
    • /
    • 2009
  • Suction Drain Method is soft ground improvement technique, in which a vacuum pressure can be directly applied to the Vertical Drain Board to promote consolidation and strengthening the soft ground. This method does not require a surcharge load, different to embankment or vertical drain method. In this study, Using Suction-CAIN program, which optimize th Suction Drain method, estimate validity Suction Drain method on deep soft ground

  • PDF

Effects of Size and Shape of Drain on Horizontal Vacuum Drain (배수재의 직경과 형상변화가 수평진공배수에 미치는 영향)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo;Lee, Byung-Kon
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.293-301
    • /
    • 2001
  • This paper is experimental results of investigating the efficiency of horizontal vacuum drainage system. Effects of size and shape of drain on horizontal vacuum drainage were studied. Model tests in the laboratory with soft marine clay were carried out with drain pipe of having three different diameters and PBD (Plastic Board Drain) of strip shape so that consolidation settlement of soft clay due to applied vacuum pressure, amount of discharge, ground settlement and distributions of pore pressure and undrained shear strength were measured during testing. From results of model test, amount of discharge due to vacuum pressure was increased with the diameter of pipe drain whereas the drain efficiency of pipe in per unit area of drain surface was decreased with diameter of pipe. The rate of discharge per unit time was reduced very fast with diameter of pipe. Settlement of ground surface with time was increased with diameter of pipe as a result of increase of discharge to drain pipe.

  • PDF

The Discharge Capacity Test & Vertical Drain Adoption Considering the Ground Condition (지반특성을 고려한 연직배수재의 통수능 시험 및 선정)

  • Jung, Hun-Chul;Shin, Kyung-Ha;Jung, Ki-Moon;Huh, Jip
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.373-382
    • /
    • 2007
  • In the vertical drain method, discharge capacity is generally one of the most important factor which affect on the estimation of the drain efficiency. However, adopting the drain considering discharge capacity only is not sufficiently considered method so that systematic criteria for adoption is necessary to choose the most suitable drain. Therefore, this study represents the application method considering behavior of the ground and vertical drain which is coupled together and ground improvement efficiency analyzing various cases of discharge capacity test performed in the recent soft ground improvement projects. According to the analysis, most drains tend to satisfy the required discharge capacity. It presents that deformed shape of the drains and well resistance estimation along the ground settlement, improvement efficiency by water content ratio along the depth and shear strength obtained after ground improvement should be considered altogether with the discharge capacity to select the proper drain. Also, appropriate adoption of drain material considering the ground condition is vital through analyzing the field measured data and comparing the result of the discharge capacity test as various vertical drain materials are being constructed continuously.

  • PDF

Finite element analysis for the difference of displacement behavior developed from suction drain method and vertical drain method (Suction 연직배수 공법과 PDB 공법의 변위거동 차이에 대한 유한 요소 해석)

  • Kim, Ki-Nyeon;Ahan, Dong-Wook;Han, Sang-Jae;Jung, Seung-Yong;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1165-1172
    • /
    • 2006
  • In this study, an aspect of settlement, developed from different ground improvement method like suction drain method using vacuum pressure and vertical drain method using overburden pressure, was compared each other. In order to analyze settlement tendency of each method exactly, the finite element analysis program was used. The analyses of vertical settlement and lateral displacement for suction drain method and vertical drain method were conducted independently during the solving stage. The initial condition of drainage zone was fixed with 25m depth and 21m width. After the program analyses, the settlement condition had a different tendency with the ground improvement method. Especially, in the results of vertical drain method, the disparity of settlement between the middle of improved zone and unimproved zone. In the case of suction drain method, however, the difference of settlement was smaller than that of vertical drain method.

  • PDF