• 제목/요약/키워드: Drag and Lift Coefficients

검색결과 163건 처리시간 0.028초

Performance Study of Thrust Control Unit with the Various Geometric Shapes

  • Kim, Kyoung-Ryun;Park, Jong-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권4호
    • /
    • pp.354-361
    • /
    • 2016
  • This study aims to identify aerodynamic characteristics of the ramp tab, a mechanical deflector, by conducting a non-combustive experiment using compressed air and supersonic flow test equipment. With the ramp tabs installed symmetrically and asymmetrically on the outlet of the supersonic nozzle, the structure of the flow field, the thrust spoilage, the thrust deviation angle, and the lift/drag coefficients were derived and analyzed. The results show that the asymmetrically-installed ramp tabs are advantageous relative to the symmetrically-installed tabs in terms of the performance of thrust vector control, thrust deviation angle, and lift coefficient.

CFD estimation of HDCs for varying bodies of revolution of underwater gliders

  • R.V. Shashank Shankar;R. Vijayakumar
    • Ocean Systems Engineering
    • /
    • 제13권3호
    • /
    • pp.269-286
    • /
    • 2023
  • Autonomous Underwater Gliders (AUGs) are a type of Underwater Vehicles that move without the help of a standard propeller. Gliders use buoyancy engines to vary their weight or buoyancy and traverse with the help of the Lift and Drag forces developed from the fuselage and the wings. The Lift and Drag Coefficients, also called Hydrodynamic coefficients (HDCs) play a major role in glider dynamics. This paper examines the effect of the different types of glider fuselages based on the bodies of revolution (BOR) of NACA sections. The HDCs of the glider fuselages are numerically estimated at a low-speed regime (105 Reynolds Number) using Computational Fluid Dynamics (CFD). The methodology is validated using published literature, and the results of CFD are discussed for possible application in the estimation of glider turning motion.

Performance of a hydrofoil operating close to a free surface over a range of angles of attack

  • Ni, Zao;Dhanak, Manhar;Su, Tsung-chow
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.1-11
    • /
    • 2021
  • Performance of a NACA 634-021 hydrofoil in motion under and in close proximity of a free surface for a large range of angles of attack is studied. Lift and drag coefficients of the hydrofoil at different submergence depths are investigated both numerically and experimentally, for 0° ≤ AoA ≤ 30° at a Reynolds number of 105. The results of the numerical study are in good agreement with the experimental results. The agreement confirms the new finding that for a submerged hydrofoil operating at high angles of attack close to a free surface, the interaction between the hydrofoil-motion induced waves on the free surface and the hydrofoil results in mitigation of the flow separation characteristics on the suction side of the foil and delay in stall, and improvement in hydrofoil performance. In comparing with a baseline case, results suggest a 55% increase in maximum lift coefficient and 90% average improvement in performance for, based on the lift-to-drag ratio, but it is also observed significant decrease of lift-to-drag ratio at lower angles of attack. Flow details obtained from combined finite volume and volume of fluid numerical methods provide insight into the underlying enhancement mechanism, involving interaction between the hydrofoil and the free surface.

Aerodynamic coefficients of inclined and yawed circular cylinders with different surface configurations

  • Lin, Siyuan;Li, Mingshui;Liao, Haili
    • Wind and Structures
    • /
    • 제25권5호
    • /
    • pp.475-492
    • /
    • 2017
  • Inclined and yawed circular cylinder is an essential element in the widespread range of structures. As one of the applications, cables on bridges were reported to have the possibility of suffering a kind of large amplitude vibration called dry galloping. In order to have a detailed understanding of the aerodynamics related to dry galloping, this study carried out a set of wind tunnel tests for the inclined and yawed circular cylinders. The aerodynamic coefficients of circular cylinders with three surface configurations, including smooth, dimpled pattern and helical fillet are tested using the force balance under a wide range of inclination and yaw angles in the wind tunnel. The Reynolds number ranges from $2{\times}10^5$ to $7{\times}10^5$ during the test. The influence of turbulence intensity on the drag and lift coefficients is corrected. The effects of inclination angle yaw angle and surface configurations on the aerodynamic coefficients are discussed. Adopting the existed the quasi-steady model, the nondimensional aerodynamic damping parameters for the cylinders with three kinds of surface configurations are evaluated. It is found that surface with helical fillet or dimpled pattern have the potential to suppress the dry galloping, while the latter one is more effective.

점度 가 相異한 流體境界面 근처 에서 圓柱주위 의 二次元 低速流動 의 解析 (Slow Motion of a Circular Cylinder Near the Plane Interface of Viscous Fluids)

  • 오세훈;강신영
    • 대한기계학회논문집
    • /
    • 제7권2호
    • /
    • pp.175-185
    • /
    • 1983
  • When a circular cylinder near the plane fluid-interface of different viscosities is in parallel and normal motion, solutions of the Oseen equation are obtained. Classical image method with Faxen's integral form is used to satisfy the boundary conditions on the plane interface. Coefficients of drag and lift increase as a cylinder approaches to the interface. But drag-coefficients of parallel motions with viscosity-ratio less than unity are decreased slightly. They show monotonic increase with Reynolds number in case of parallel motion, but minimum values of drag coefficients in normal motion are appeared. On the other hand Stokes' solution are obtained by taking limits of low Reynolds number except the case of parallel motion with viscosity-ratio not equal to infinity.

방음벽의 유무에 따른 박스형 거더교의 풍력계수 평가 (Evaluation of Wind Force Coefficients of a Box-Type Girder Bridge with Noise Barriers)

  • 정승환;이영기
    • 대한토목학회논문집
    • /
    • 제38권5호
    • /
    • pp.627-634
    • /
    • 2018
  • 본 연구에서는 바람의 영향을 받는 박스형 콘크리트 거더교에 대한 풍력계수를 산정하기 위하여 전산유체해석(CFD)를 수행하였다. 방음벽이 없는 교량 단면에 대한 항력계수, 양력계수 및 비틀림모멘트계수를 산정하였고, 이 풍력계수 값들을 다양한 높이의 방음벽을 갖는 교량 단면에 대한 풍력계수 값들과 비교하였다. 전산유체해석에서 풍력계수들을 산정할 때 전단응력수송(SST) $k-{\omega}$ 난류 모델을 적용하였고, 마찰 항력계수가 전체 항력계수에 미치는 기여도를 조사하였다. 연구 결과, 바람이 수평으로 불 때 항력계수는 방음벽의 높이가 커질수록 증가하였고, 마찰 항력의 기여도는 교량 단면에 방음벽이 없을 때 가장 높았다. 따라서 교량설계에서 풍력을 산정할 때 방음벽의 높이의 영향을 고려할 필요가 있으며, 벽면 마찰력은 교량에 작용하는 풍력을 산정할 때 중요한 역할을 하였다.

Numerical studies on non-shear and shear flows past a 5:1 rectangular cylinder

  • Zhou, Qiang;Cao, Shuyang;Zhou, Zhiyong
    • Wind and Structures
    • /
    • 제17권4호
    • /
    • pp.379-397
    • /
    • 2013
  • Large Eddy Simulations (LES) were carried out to investigate the aerodynamic characteristics of a rectangular cylinder with side ratio B/D=5 at Reynolds number Re=22,000 (based on cylinder thickness). Particular attention was devoted to the effects of velocity shear in the oncoming flow. Time-averaged and unsteady flow patterns around the cylinder were studied to enhance understanding of the effects of velocity shear. The simulation results showed that the Strouhal number has no significant variation with oncoming velocity shear, while the peak fluctuation frequency of the drag coefficient becomes identical to that of the lift coefficient with increase in velocity shear. The intermittently-reattached flow that features the aerodynamics of the 5:1 rectangular cylinder in non-shear flow becomes more stably reattached on the high-velocity side, and more stably separated on the low-velocity side. Both the mean and fluctuating drag coefficients increase slightly with increase in velocity shear. The mean and fluctuating lift and moment coefficients increase almost linearly with velocity shear. Lift force acts from the high-velocity side to the low-velocity side, which is similar to that of a circular cylinder but opposite to that of a square cylinder under the same oncoming shear flow.

천음속 여객기의 받음각과 마하수에 따른 공력 해석 (NUMERICAL AERODYNAMIC ANALYSIS OF A TRANSONIC COMMERCIAL AIRPLANE ACCORDING TO THE ANGLE OF ATTACK AND MACH NUMBER)

  • 김양균;김성초;최종욱;김정수
    • 한국전산유체공학회지
    • /
    • 제13권4호
    • /
    • pp.66-71
    • /
    • 2008
  • This research computes the viscous flow field and aerodynamics around the model of a commercial passenger airplane, Boeing 747-400, which cruises in transonic speed. The configuration was realized through the reverse engineering based on the photo scanning measurement. In results, the pressure coefficients at the several wing section on the wing surface of the airplane was described and discussed to obtain the physical meaning. The lift coefficient increased almost linearly up to $17^{\circ}$. Here the maximum lift occurred at $18^{\circ}$ according to the angle of attack. And the minimum drag is expected at $-2^{\circ}$. The maximum lift coefficient occurred at the Mach number 0.89, and the drag coefficient rapidly increased after the Mach number of 0.92. Also shear-stress transport model predicts slightly lower aerodynamic coefficients than other models and Chen's model shows the highest aerodynamic values. The aerodynamic performance of the airplane elements was presented.

기울어진 정방형 실린더에 작용하는 유체력 (FLOW-INDUCED FORCES ON AN INCLINED SQUARE CYLINDER)

  • 윤동혁;양경수;최춘범
    • 한국전산유체공학회지
    • /
    • 제14권3호
    • /
    • pp.9-15
    • /
    • 2009
  • Numerical investigation has been carried out for laminar flow past an inclined square cylinder in cross freestream. In particular, inclination of a square cylinder with respect to the main flow direction can cause sudden shift of the separation points to other edges, resulting in drastic change of flow-induced forces on the cylinder such as Strouhal number (St) of vortex shedding, drag and lift forces on the cylinder, depending upon the inclination angle. Collecting all the numerical results obtained, we propose contour diagrams of drag/lift coefficients and Strouhal number on an Re-Angle plane. This study would be the first step towards understanding flow-induced forces on cylindrical structures under a strong gust of wind from the viewpoint of wind hazards.

생체모방 유동제어 기반 가변 피치 나선형 실린더 주위 유동 해석 (Numerical Simulation of Flow around Variable Pitch Helically Elliptic Twisted Cylinder based on the Biomimetic Flow Control)

  • 문자훈;윤현식
    • 대한조선학회논문집
    • /
    • 제57권2호
    • /
    • pp.96-103
    • /
    • 2020
  • The new geometric disturbance is proposed to control the flow around the bluff body. The new geometry is characterized by the variable pitch which is applied on the Helically Elliptic Twisted (HET) cylinder. The performance of the HTE geometry as a biomimetic passive flow control was confirmed by Jung and Yoon (2014). The Large Eddy Simulation (LES) is used for the evaluation of the flow control performance of the Variable Pitch HTE (VPHTE) cylinder at Reynolds number (Re) of 3000 corresponding to the subcritical regime. The circular and HTE cylinders are also considered to compare the performance of the VPHTE cylinder at the same Re. The VPHTE cylinder gives the smallest values of the force coefficients than the circular and HTE cylinders. The drag and lift coefficients of the VPHTE cylinder are about 15.2% and 94.0% lower than those of the circular cylinder, respectively. Especially, the VPHTE cylinder achieves about 2.3% and 30.0% reduction of the drag coefficient and the root mean square of the lift coefficient than the HTE cylinder, respectively. Furthermore, The VPHTE cylinder forms more elongated and stabilized separated shear layer than the circular cylinder, which supports the reduction of the force coefficients.