• Title/Summary/Keyword: Drag Measurements

Search Result 67, Processing Time 0.028 seconds

Experimental Assessment of the Drag Reduction Efficiency of the Outer-layer Vertical Blades (외부경계층 수직 날의 저항저감효과에 대한 실험적 연구)

  • An, Nam-Hyun;Chun, Ho-Hwan;Lee, In-Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.487-494
    • /
    • 2008
  • An experimental assessment has been made of the drag reducing efficiency of the outer-layer vertical blades, which were first devised by Hutchins (2003). The drag reduction efficiency of the blades was reported to reach as much as 30%. The assessment of the drag reducing efficiency is mainly restricted to the downstream region of the blades. Indeed, sufficient care has not been taken to such adverse effects as the increase in the wetted surface area and the flow disturbances due to the presence of the blades. In the present study, a series of drag force measurements in towing tank and circulating water channel has been performed toward the assessments of the total drag reduction efficiency of the outer-layer vertical blades.

High-Accuracy Coastdown Test Method by Distance-Time Measurement: I. Theoretical Background and Discussions on Accuracy Improvements (거리·시간 측정에 의한 고정도 타행시험법 : I. 관련이론 및 정밀도 향상방법 고찰)

  • Hur, N.;Ahn, I.K.;Petrushov, V.A.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.51-61
    • /
    • 1995
  • A coast down test mothod has been used to determine the resistance forces on running vehicle due to the aerodynamic drag, rolling resistance and driveline resistance. Most of the tests, however, are based on the Velocity-Time measurements, which require a sophisticated velocity measuring device and contain much error by nature. In the present study a coast down test method based on Distance-Time measurements is introduced, which contains the original idea of Russian scientist Prof. Petrushov along with the suggestions for improvement of the accuracy.

  • PDF

Wind-tunnel blockage effect on drag coefficient of circular cylinders

  • Anthoine, J.;Olivari, D.;Portugaels, D.
    • Wind and Structures
    • /
    • v.12 no.6
    • /
    • pp.541-551
    • /
    • 2009
  • This paper explains how to correctly measure the drag coefficient of a circular cylinder in wind tunnels with large blockage ratios and for the sub-critical to the super-critical flow regimes. When dealing with large blockage ratios, the drag has to be corrected for wall constraints. Different formulations for correcting blockage effect are compared for each flow regime based on drag measurements of smooth circular cylinders performed in a wind tunnel for three different blockage ratios. None of the correction model known in the literature is valid for all the flow regimes. To optimize the correction and reduce the scatter of the results, different correction models should be combined depending on the flow regime. In the sub-critical regime, the best results are obtained using Allen and Vincenti's formula or Maskell's theory with ${\varepsilon}$=0.96. In the super-critical regime, one should prefer using Glauert's formula with G=0.6 or the model of Modi and El-Sherbiny. The change in the formulations appears at the flow transition with a variation of the wake pattern when passing from sub-critical to super-critical flow regimes. This parameter being not considered in the known blockage corrections, these theories are not valid for all the flow regimes.

Effect of Drag Stages Surface Roughness on the Compression Ratio of a TMDP

  • Bianco, Alessandra Dal;Bonmassar, Luca
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.120-123
    • /
    • 2016
  • The rotor of a turbomolecular drag pump is generally made of an aluminum alloy. Its surface finish is affected by various processes that the rotor itself undergoes during the manufacturing phase. The impact of different surface finishes on the pumping performances of a turbomolecular pump has been mainly investigated by Sawada et al [1]. The present work aims to broaden the previous bibliographic study to the drag stages of a turbomolecular pump by testing the impact of different surface finishes on the compression ratio of the pump. Experimental tests have been made focusing on two processes: the corundum sandblasting and the glass microspheres shot-peening. Both the processes flatten and/or physically remove EDM melted spheres; in particular, blasted surfaces obtained by glass shot-peening are generally smoother than surfaces obtained by corundum sandblasting. In order to characterize the surface texture left by such processes, preliminary surface roughness measurements have been made on the drag rotor disks of several pumps. The experimental tests conducted on both sandblasted and shot-peened rotors confirms previous results obtained on the turbo stages by Sawada et al. [1], showing that the average roughness of the surface has an impact on the compression ratio of the pump; in particular, an increment in the surface roughness causes a corresponding increment in the compression ratio of the pump and vice versa. For the tested pumps, the higher surface roughness gives a factor of increment of about 2 on the measured hydrogen maximum compression ratio of the pump.

A Computational Fluid Dynamic Study on the Sculling Motion for Water Safety (수상안전을 위한 Sculling 동작의 전산유체역학적 연구)

  • Lee, Hyo-Taek;Kim, Yong-Jae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.24 no.1
    • /
    • pp.18-24
    • /
    • 2012
  • This study analyses the effects of various angles in sculling on human body lift and drag by means of computational fluid dynamics, discusses the importance of sculling and provides a basis for the development of future water safety education programmes. Study subjects were based on the mean data collected from males in the age of 20s from a survey on the anthropometric dimensions of the Koreans. Moreover, lift, drag as well as coefficient values, all of which were governed by the angle of the palm, were calculated using 3-dimentional modelling produced by computational fluid dynamics programmes i.e. CFD. Interpretations were performed via general k-${\varepsilon}$ turbulence modelling in order to determine lift, drag and coefficient values. Turbulence intensity was set to one per cent as per the figures from preceding research papers and 3-dimentional simulations were performed for a total of five different angles $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$. The drag and lift values for the differing angles of the hands during sculling movement are as follows. The lift and drag values gradually increased with the increasing angle of the palm, however, the magnitude of increase for drag started to predominate lift from $45^{\circ}$ and lift gradually decreased from $60^{\circ}$. Overall, it is concluded that the optimal efficiency of sculling can be achieved at the angles $15^{\circ}$ and $30^{\circ}$, and it is anticipated that greater safety and informative education can be ensured for Life saving trainees if the results were to be applied to practical settings. However, as the study was conducted using simulation programmes which performed analyses on the collected anthropometric dimension, the obtained results cannot be made universal, which warrants furthers studies involving varied study subjects with actual measurements taken in water.

Application of Flow Control Devices for Smart Unmanned Aerial Vehicle (SUAV) (스마트무인기에 적용한 유동제어 장치)

  • Chung, Jin-Deog;Hong, Dan-Bi
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.197-206
    • /
    • 2009
  • To improve the aerodynamic efficiency of Smart Unmanned Aerial Vehicle (SUAV), vortex generators and flow fence are applied on the surface and the tip of wing. The initially applied vortex generator increased maximum lift coefficient and delayed the stall angle while it produced excessive increase in drag coefficient. It turns out reduction of the airplane's the lift/drag ratio. The new vortex generators with L-shape and two different height, 3mm and 5mm, were used to TR-S4 configuration to maintain the desired level of maximum lift coefficient and drag coefficient. Flow fence was also applied at the end of both wing tip to reduce the interaction between nacelle and wing when nacelle tilting angles are large enough and produce flow separation. To examine the effect of flow fence, flow visualization and force and moment measurements were done. The variation of the aerodynamic characteristics of SUAV after applying flow control devices are summarized.

  • PDF

Wind Tunnel Test of an Unmanned Aerial Vehicle (UAV)

  • Chung, Jin-Deog;Lee, Jang-Yeon;Sung, Bong-Zoo;Koo, Sa-Mok
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.776-783
    • /
    • 2003
  • A low speed wind tunnel test was conducted for full-scale model of an unmanned aerial vehicle (UAV) in Korea Aerospace Research Institute (KARI) Low Speed Wind Tunnel(LSWT). The purpose of the presented paper is to illustrate the general aerodynamic and performance characteristics of the UAV that was designed and fabricated in KARI. Since the testing conditions were represented minor portions of the load-range of the external balance system, the repeatability tests were performed at various model configurations to confirm the reliability of measurements. Variations of drag-polar by adding model components such as tails, landing gear and test boom are shown, and longitudinal and lateral aerodynamic characteristics after changing control surfaces such as aileron, flap, elevator and rudder are also presented. To explore aerodynamic characteristics of an UAV with model components build-up and control surface deflections, lift curve slope, pitching moment variation with lift coefficients and drag-polar are examined. The discussed results might be useful to understand the general aerodynamic characteristics and drag pattern for the given UAV configuration.

Experimental study on Re number effects on aerodynamic characteristics of 2D square prisms with corner modifications

  • Wang, Xinrong;Gu, Ming
    • Wind and Structures
    • /
    • v.22 no.5
    • /
    • pp.573-594
    • /
    • 2016
  • Simultaneous pressure measurements on 2D square prisms with various corner modifications were performed in uniform flow with low turbulence level, and the testing Reynolds numbers varied from $1.0{\times}10^5$ to $4.8{\times}10^5$. Experimental models were a square prism, three chamfered-corner square prisms (B/D=5%, 10%, and 15%, where B is the chamfered corner dimension and D is the cross-sectional dimension), and six rounded-corner square prisms (R/D =5%, 10%, 15%, 20%, 30%, and 40%, where R is the corner radius). Experimental results of drag coefficients, wind pressure distributions, power spectra of aerodynamic force coefficients, and Strouhal numbers are presented. Ten models are divided into various categories according to the variations of mean drag coefficients with Reynolds number. The mean drag coefficients of models with $B/D{\leq}15%$ and $R/D{\leq}15%$ are unaffected by the Reynolds number. On the contrary, the mean drag coefficients of models with R/D=20%, 30%, and 40% are obviously dependent on Reynolds number. Wind pressure distributions around each model are analyzed according to the categorized results.The influence mechanisms of corner modifications on the aerodynamic characteristics of the square prism are revealed from the perspective of flow around the model, which can be obtained by analyzing the local pressures acting on the model surface.

Verification of Drag Reduction Effect of Outer-layer Vertical Blades based on Model Test (모형선 시험을 통한 외부경계층 수직 날 배열의 저항저감효과 검증)

  • Lee, Seong Hoon;Lee, Inwon
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.3
    • /
    • pp.26-34
    • /
    • 2018
  • In the present study, an experimental assessment has been made of the drag reducing efficiency of the outer-layer vertical blades, which were first devised by Hutchins(1). A detailed flow field measurements have been performed using 2-D time resolved PIV with a view to enabling the identification of drag reduction mechanism. In addition, an experimental investigation has been made of the applicability of outer-layer vertical blades to real ship model. The arrays of outer-layer vertical blades have been installed onto the flat side and flat bottom of a 300k KVLCC model. A series of towing tank test has been carried out to investigate resistance (CTM) reduction efficiency with various geometric parameters and installed places of blades. The installation of vertical blades led to the CTM reduction of 1.44~3.17% near the service speed.

Computational analysis of compressibility effects on cavity dynamics in high-speed water-entry

  • Chen, Chen;Sun, Tiezhi;Wei, Yingjie;Wang, Cong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.495-509
    • /
    • 2019
  • The objective of this study is to analyze the compressibility effects of multiphase cavitating flow during the water-entry process. For this purpose, the water-entry of a projectile at transonic speed is investigated computationally. A temperature-adjusted Tait equation is used to describe the compressibility effects in water, and air and vapor are treated as ideal gases. First, the computational methodology is validated by comparing the simulation results with the experimental measurements of drag coefficient and the theoretical results of cavity shape. Second, based on the computational methodology, the hydrodynamic characteristics of flow are investigated. After analyzing the cavitating flow in compressible and incompressible fluids, the characteristics under compressible conditions are focused upon. The results show that the compressibility effects play a significant role in the development of cavitation and the pressure inside the cavity. More specifically, the drag coefficient and cavity size tend to be larger in the compressible case than those in the incompressible case. Furthermore, the influence of entry velocities on the hydrodynamic characteristics is investigated to provide an insight into the compressibility effects on cavitating flow. The results show that the drag coefficient and the impact pressure vary with the entry velocity, and the prediction formulas for drag coefficient and impact pressure are established respectively in the present study.