• Title/Summary/Keyword: Drag Force

Search Result 602, Processing Time 0.022 seconds

Influence of latitude wind pressure distribution on the responses of hyperbolodial cooling tower shell

  • Zhang, Jun-Feng;Ge, Yao-Jun;Zhao, Lin
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.579-601
    • /
    • 2013
  • Interference effects are of considerable concern for group hyperboloidal cooling towers, but evaluation methods and results are different from each other because of the insufficient understanding on the structure behavior. Therefore, the mechanical performance of hyperboloidal cooling tower shell under wind loads was illustrated according to some basic properties drawn from horizontal rings and cantilever beams. The hyperboloidal cooling tower shell can be regarded as the coupling of horizontal rings and meridian cantilever beams, and this perception is beneficial for understanding the mechanical performance under wind loads. Afterwards, the mean external latitude wind pressure distribution, CP(${\theta}$), was artificially adjusted to pursue the relationship between different CP(${\theta}$) and wind-induced responses. It was found that the maximum responses in hyperboloidal cooling tower shell are primarily dominated by the non-uniformity of CP(${\theta}$) but not the local pressure amplitude CP or overall resistance/drag coefficient CD. In all the internal forces, the maximum amplitude of meridian axial tension shows remarkable sensitivity to the variation of CP(${\theta}$) and it's also the controlling force in structure design, so it was selected as an indicator to evaluate the influence of CP(${\theta}$) on responses. Based on its sensitivity to different adjustment parameters of CP(${\theta}$), an comprehensive response influence factor, RIF, was deduced to assess the meridian axial tension for arbitrary CP(${\theta}$).

Impact of spar-nacelle-blade coupling on the edgewise response of floating offshore wind turbines

  • Dinh, Van-Nguyen;Basu, Biswajit;Nielsen, Soren R.K.
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.231-253
    • /
    • 2013
  • The impact of spar-nacelle-blade coupling on edgewise dynamic responses of spar-type floating wind turbines (S-FOWT) is investigated in this paper. Currently, this coupling is not considered explicitly by researchers. First of all, a coupled model of edgewise vibration of the S-FOWT considering the aerodynamic properties of the blade, variable mass and stiffness per unit length, gravity, the interactions among the blades, nacelle, spar and mooring system, the hydrodynamic effects, the restoring moment and the buoyancy force is proposed. The aerodynamic loads are combined of a steady wind (including the wind shear) and turbulence. Each blade is modeled as a cantilever beam vibrating in its fundamental mode. The mooring cables are modeled using an extended quasi-static method. The hydrodynamic effects calculated by using Morison's equation and strip theory consist of added mass, fluid inertia and viscous drag forces. The random sea state is simulated by superimposing a number of linear regular waves. The model shows that the vibration of the blades, nacelle, tower, and spar are coupled in all degrees of freedom and in all inertial, dissipative and elastic components. An uncoupled model of the S-FOWT is then formulated in which the blades and the nacelle are not coupled with the spar vibration. A 5MW S-FOWT is analyzed by using the two proposed models. In the no-wave sea, the coupling is found to contribute to spar responses only. When the wave loading is considered, the coupling is significant for the responses of both the nacelle and the spar.

UUV Platform Optimal Design for Overcoming Strong Current

  • Kim, Min-Gyu;Kang, Hyungjoo;Lee, Mun-Jik;Cho, Gun Rae;Li, Ji-Hong;Kim, Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.434-445
    • /
    • 2021
  • This paper proposes an optimal design method for an unmanned underwater vehicle (UUV) platform to overcome strong current. First, to minimize the hydrodynamic drag components in water, the vehicle is designed to have a streamlined disc shape, which help maintaining horizontal motion (zero roll and pitch angles posture) while overcoming external current. To this end, four vertical thrusters are symmetrically mounted outside of the platform to stabilize the vehicle's horizontal motion. In the horizontal plane, four horizontal thrusters are symmetrically mounted outside of the disc, and each of them has the same forward and reverse thrust performances. With these four thrusters, a specific thrust vector control (TVC) method is proposed, and for external current in any direction, four horizontal thrusters are controlled to generate a vectored thrust force to encounter the current while minimizing the vehicle's rotation and maintaining its heading. However, for the numerical simulations, the vehicle's hydrodynamic coefficients related to the horizontal plane are derived based on both theoretical and empirically derived formulas. In addition to the simulation, experimental studies in both the water tank and circulating water channel are performed to verify the vehicle's various final performances, including its ability to overcome strong current.

Effect of trailing-edge modification over aerodynamic characteristics of NACA 0020 airfoil

  • Ethiraj, Livya;Pillai, Subramania Nadaraja
    • Wind and Structures
    • /
    • v.33 no.6
    • /
    • pp.463-470
    • /
    • 2021
  • This study investigates the aerodynamic characteristics of NACA series airfoil by altering the trailing edge in the form of extended and serrated sections. This contemporary advent examined NACA 0020 airfoil experimentally at the angle of attack ranging from 0° to 45° and for the Reynolds number of 2.46 × 105. To figure out the flow behaviour, the standard average pressure distribution over the airfoil surface is estimated with 50 pressure taps. The time series surface pressure is recorded for 700 Hz of sampling frequency. The extended trailing edge of 0.1 c, 0.2 c and 0.3 c are attached to the base airfoil. Further, the triangular serration is introduced with the base length of 2 cm, 4 cm and 6 cm. Each base length with three different amplitudes of 0.1 c, 0.2 c and 0.3 c were designed and equipped with the baseline case at the trailing edge and tested. The aerodynamic force coefficient, as well as pressure coefficient are presented. The obtained data advises that modification in the trailing edge will reflect the aerodynamic characteristics and the flow behaviour over the section of a wing. Resultantly, the extended trailing edge as a thin elongated surface attached to a base airfoil without revising the main airfoil favors good lift increment. The serrated trailing edge acts as a flow control device by altering the flow pattern results to delay the stall phenomenon. Besides it, improves lift co-efficient with less amount of additional drag. This extended and serrated trailing edge approach can support for designing the future smart airfoil.

Experimental study on the influence of Reynolds number and roll angle on train aerodynamics

  • Huang, Zhixiang;Li, Wenhui;Liu, Tanghong;Chen, Li
    • Wind and Structures
    • /
    • v.35 no.2
    • /
    • pp.83-92
    • /
    • 2022
  • When the rolling stocks run on the curve, the external rail has to be lifted to a certain level to balance the centrifugal force acting on the train body. Under such a situation, passengers may feel uncomfortable, and the slanted vehicle has the potential overturning risks at high speed. This paper conducted a wind tunnel test in an annular wind tunnel with φ=3.2 m based on a 1/20th scaled high-speed train (HST) model. The sensitivity of Reynolds effects ranging from Re = 0.37×106 to Re = 1.45×106 was tested based on the incoming wind from U=30 m/s to U=113 m/s. The wind speed covers the range from incompressible to compressible. The impact of roll angle ranging from γ=0° to γ=4° on train aerodynamics was tested. In addition, the boundary layer development was also analyzed under different wind speeds. The results indicate that drag and lift aerodynamic coefficients gradually stabilized and converged over U=70 m/s, which could be regeared as the self-similarity region. Similarly, the thickness of the boundary layer on the floor gradually decreased with the wind speed increase, and little changed over U=80 m/s. The rolling moment of the head and tail cars increased with the roll angle from γ=0° to γ=4°. However, the potential overturning risks of the head car are higher than the tail car with the increase of the roll angle. This study is significant in providing a reference for the overturning assessment of HST.

Design of an Elliptical Orbit for High-Resolution Optical Observation at a Very Low Altitude over the Korean Peninsula

  • Dongwoo Kim;Taejin Chung
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.35-44
    • /
    • 2023
  • Surveillance and reconnaissance intelligence in the space domain will become increasingly important in future battlefield environments. Moreover, to assimilate the military provocations and trends of hostile countries, imagery intelligence of the highest possible resolution is required. There are many methods for improving the resolution of optical satellites when observing the ground, such as designing satellite optical systems with a larger diameter and lowering the operating altitude. In this paper, we propose a method for improving ground observation resolution by using an optical system for a previously designed low orbit satellite and lowering the operating altitude of the satellite. When the altitude of a satellite is reduced in a circular orbit, a large amount of thrust fuel is required to maintain altitude because the satellite's altitude can decrease rapidly due to atmospheric drag. However, by using the critical inclination, which can fix the position of the perigee in an elliptical orbit to the observation area, the operating altitude of the satellite can be reduced using less fuel compared to a circular orbit. This method makes it possible to obtain a similar observational resolution of a medium-sized satellite with the same weight and volume as a small satellite. In addition, this method has the advantage of reducing development and launch costs to that of a small-sized satellite. As a result, we designed an elliptical orbit. The perigee of the orbit is 300 km, the apogee is 8,366.52 km, and the critical inclination is 116.56°. This orbit remains at its lowest altitude to the Korean peninsula constantly with much less orbit maintenance fuel compared to the 300 km circular orbit.

Cumulative control output compensation technique for voice coil actuator used in small guided missiles (소형 유도무기용 보이스 코일 구동장치의 누적 제어 출력 보상 기법)

  • Wonsung Lee;Gwang Tae Kim;Choonghee Lee;Yongseon Lee;Seungho Jeong;Sungho Choi
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.1-9
    • /
    • 2024
  • In this study, we researched control compensation techniques to enhance control robustness against external forces and responsiveness to output dead zones in direct-actuated voice coil actuators for small guided missiles. An aircraft's wings must optimally control the command angle while managing various nonlinear external forces such as drag, lift, and thrust during flight. The small direct -drive voice coil actuator, when applied, benefits from small current requirements in no-load situations but suffers from diminished control robustness due to rapid increases in control current during external force applications. To address this issue, we designed and implemented a system that compensates for errors by accumulating additional output, thus improving the actuator's responsiveness in control scenarios with external forces. This was verified through experimental results.

Study on the Measurements of Flow Field around Cambered Otter Board Using Particle Image Velocimetry (PIV를 이용한 만곡형 전개판의 유동장 계측에 관한 연구)

  • 박경현;이주희;현범수;노영학;배재현
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.1
    • /
    • pp.43-57
    • /
    • 2002
  • This paper introduces an analysis method to predicting the flow characteristic of flow field around otter board In order to develope a high performance model. In this experiment, it is used a numerical analysis of flow field through CFD(Computational Fluid Dynamic), PIV method in which quantitative, qualitative evaluation is possible. In this experiment, it is used PIV method with flow filed image around otter board in order to analysis of flow characteristic. The result compared flow pattern with analysis result through CFD and also measurement result of lift and drag force coefficient carried out in CWC(Circulating Water Channel). The numerical analysis result is matched well with experiment result of PIV in the research and it is able to verify In the physical aspect. The result is as follows ; (1) It was carried out visibility experiment using laser light sheet, and picture analysis through PIV method in order to analysis fluid field of otter-board. As a result, the tendency of qualitative fluid movement only through the fluid particle's flow could be known. (2) Since PIV analysis result is quantitative, this can be seen in velocity vector distributions, instantaneous streamline contour, and average vorticity distributions through various post processing method. As a result, the change of flow field could be confirmed. (3) At angle of attack 24$^{\circ}$ where It Is shown maximum spreading force coefficient, the analysis result of CFD and PIV had very similar flow pattern. In both case, at the otter-board post edge a little boundary layer separation was seen, but, generally they had a good flow (4) As the result of post processing with velocity vector distributions, instantaneous streamline contour and average vorticity distributions by PIV, boundary layer separation phenomenon started to happen from angle of attack 24$^{\circ}$, and from over angle of attack 28$^{\circ}$, it happen at leading edge side with the width enlarged.

Cumulative Distributions and Flow Structure of Two-Passage Shear Coaxial Injector with Various Gas Injection Ratio (2중 유로형 전단 동축 분사기의 기체 분사율에 따른 유동 및 입도분포)

  • Lee, Inchul;Kim, Dohun;Koo, Jaye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.675-682
    • /
    • 2013
  • To verify the effect of inner- and outer-stage gas jets, a shear coaxial injector was designed to analyze the axial velocity profile and breakup phenomenon with an increase in the measurement distance. When the measurement position was increased to Z/d=100, the axial flow showed a fully developed shape due to the momentum transfer, aerodynamic drag effect, and viscous mixing. An inner gas injection, which induces a higher momentum flux ratio near the nozzle, produces the greater shear force on atomization than an outer gas injection. Inner- and Outer-stage gas injection do not affect the mixing between the inner and outer gas flow below Z/d=5. The experiment results showed that the main effect of liquid jet breakup was governed by the gas jet of an inner stage. As the nozzle exit of the outer-stage was located far from the liquid column, shear force and turbulence breaking up of the liquid jets do not fully affect the liquid column. In the case of an inner-stage gas injection momentum flux ratio within 0.84, with the increase in the outer gas momentum flux ratio, the SMD decreases. However, at an inner-stage gas jet momentum flux ratio over 1.38, the SMD shows the similar distribution.

Flow Resistance of Model Cage Net (모형 우리 그물의 유수저항)

  • KIM Tae-Ho;KIM Dae-An;RYU Cheong-Ro;KIM Jae-O;JEONG Eui-Cheol
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.6
    • /
    • pp.514-519
    • /
    • 2000
  • In order to develop the method for the calculation of flow resistance acting on cage net, the relation between the velocity reduction factor and $S_n/S$, the ratio of total area of netting projected to the perpendicular to the water flow $S_n$ to wall area of netting S, was derived based on the numerical and experimental analysis of the wake flow through a netting twine simplified by a cylinder and a netting panel. The velocity was reduced in accordance with the velocity reduction factor when the flow passed the netting panel upstream of a cage net. The proposed method for the calculation of fluid force acting on a square cage net was based upon the assumption that it could be divided into four side panels and one bottom panel. It was proved that the force could be calculated by the sum of the drag forces acting on the individual netting panels.

  • PDF