• Title/Summary/Keyword: Drag Direction

Search Result 150, Processing Time 0.026 seconds

Numerical investigation on the hydraulic loss correlation of ring-type spacer grids

  • Ryu, Kyung Ha;Shin, Yong-Hoon;Cho, Jaehyun;Hur, Jungho;Lee, Tae Hyun;Park, Jong-Won;Park, Jaeyeong;Kang, Bosik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.860-866
    • /
    • 2022
  • An accurate prediction of the pressure drop along the flow paths is crucial in the design of advanced passive systems cooled by heavy liquid metal coolants. To date, a generic pressure drop correlation over spacer grids by Rehme has been applied extensively, which was obtained from substantial experimental data with multiple types of components. However, a few experimental studies have reported that the correlation may give large discrepancies. To provide a more reliable correlation for ring-type spacer grids, the current numerical study aims at figuring out the most critical factor among four hypothetical parameters, namely the flow area blockage ratio, number of fuel rods, type of fluid, and thickness of the spacer grid in the flow direction. Through a set of computational fluid dynamics simulations, we observed that the flow area blockage ratio dominantly influences the pressure loss characteristics, and thus its dependence should be more emphasized, whereas the other parameters have little impact. Hence, we suggest a new correlation for the drag coefficient as CB = Cν,m2.7, where Cν,m is formulated by a nonlinear fit of simulation data such that Cν,m = -11.33 ln(0.02 ln(Reb)).

Solar concentrator optimization against wind effect

  • Sayyed Hossein Mostafavi;Amir Torabi;Behzad Ghasemi
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.109-118
    • /
    • 2024
  • A solar concentrator is a reflective surface in the shape of a parabola that collects solar rays in a focal area. This concentrator follows the path of the sun during the day with the help of a tracking system. One of the most important issues in the design and construction of these reflectors is the force exerted by the wind. This force can sometimes disrupt the stability of the concentrator and overturn the entire system. One of the ways to estimate the force is to use the numerical solution of the air flow in three dimensions around the dish. Ansys Fluent simulation software has been used for modeling several angles of attack between 0 and 180 with respect to the horizon. From the comparison of the velocity vector lines on the dish at angles of 90 to - 90 degrees, it was found that the flow lines are more concentrated inside the dish and there is a tendency for the flow to escape around in the radial direction, which indicates the presence of more pressure distribution inside the dish. It was observed that the pressure on the concave surface was higher than the convex one. Then, the effect of adding a hole with various diameter of 200, 300, 400, 500, and 600 mm on the dish was investigated. By increasing the diameter up to the optimized size of 400 mm, a decrease in the maximum pressure value in the pressure distribution was shown inside the dish. This pressure drop decreased the drag coefficient. The effect of the hole on the dish was also investigated for the 30-degree angled dish, and it was found that the results of the 90-degree case should be considered as the basis of the design.

A Design of Korean Input Method using Direction of Vowel on the Touch Screen (터치스크린에서의 모음의 방향성을 이용한 한글 입력 방식의 설계)

  • Lim, Yang-Won;Lim, Han-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.7
    • /
    • pp.924-932
    • /
    • 2011
  • Though the spread of the touch screen devices is now revitalized, the Korean input methods in the touch screen devices are mostly the button input methods using keypads. Even though the button input methods are used with a touch screen, they still adopts the existing qwerty keyboard. It means that the existing methods can not be improved. This research suggests that the Korean input method which can be used in the portable terminals and the touch screen devices, for example, a smart phone which has a limited sized screen. It assigns every vowel a process which corresponds with the Korean invention theory and the vowel input method is to drag it. Through the mock experiments, we confirmed that the simplification of the Korean alphabet is more efficient than the existing methods, in the point of the speed of the Korean input.

The Optimum Design of Airfoil Shape with Parallel Computation (병렬연산을 이용한 익형의 최적 설계)

  • Jo,Jang-Geun;Park,Won-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The aerodynamic optimization method for airfoil design was described in this paper. The Navier-Stokes equations were solved to consider the viscous flow information around an airfoil. The Modified Method of Feasible Direction(MMFD) was used for sensitivity analysis and the polynomial interpolation was used for distance calculation of the minimization. The Message Passing Interface(MPI) library of parallel computation was adopted to reduce the computation time of flow solver by decomposing the entire computational domain into 8 sub-domains and one-to-one allocating 8 processors to 8 sub-domains. The parallel computation was also used to compute the sensitivity analysis by allocating each search direction to each processor. The present optimization reduced the drag of airfoil while the lift is maintained at the tolerable design value.

Pressure Distribution over Tube Surfaces of Tube Bundle Subjected to Two-Phase Cross-Flow (이상 유동에 놓인 관군의 표면에 작용하는 압력 분포)

  • Sim, Woo Gun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.9-18
    • /
    • 2013
  • Two-phase vapor-liquid flows exist in many shell and tube heat exchangers such as condensers, evaporators, and nuclear steam generators. To understand the fluid dynamic forces acting on a structure subjected to a two-phase flow, it is essential to obtain detailed information about the characteristics of a two-phase flow. The characteristics of a two-phase flow and the flow parameters were introduced, and then, an experiment was performed to evaluate the pressure loss in the tube bundles and the fluid-dynamic force acting on the cylinder owing to the pressure distribution. A two-phase flow was pre-mixed at the entrance of the test section, and the experiments were undertaken using a normal triangular array of cylinders subjected to a two-phase cross-flow. The pressure loss along the flow direction in the tube bundles was measured to calculate the two-phase friction multiplier, and the multiplier was compared with the analytical value. Furthermore, the circular distributions of the pressure on the cylinders were measured. Based on the distribution and the fundamental theory of two-phase flow, the effects of the void fraction and mass flux per unit area on the pressure coefficient and the drag coefficient were evaluated. The drag coefficient was calculated by integrating the measured pressure on the tube by a numerical method. It was found that for low mass fluxes, the measured two-phase friction multipliers agree well with the analytical results, and good agreement for the effect of the void fraction on the drag coefficients, as calculated by the measured pressure distributions, is shown qualitatively, as compared to the existing experimental results.

Modeling of flat otter boards motion in three dimensional space (평판형 전개판의 3차원 운동 모델링)

  • Choe, Moo-Youl;Lee, Chun-Woo;Lee, Gun-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.1
    • /
    • pp.49-61
    • /
    • 2007
  • Otter boards in the trawl are the one of essential equipments for the net mouth to be spread to the horizontal direction. Its performance should be considered in the light of the spreading force to the drag and the stability of towing in the water. Up to the present, studies of the otter boards have focused mainly on the drag and lift force, but not on the stability of otter boards movement in 3 dimensional space. In this study, the otter board is regarded as a rigid body, which has six degrees of freedom motion in three dimensional coordinate system. The forces acting on the otter boards are the underwater weight, the resistance of drag and spread forces and the tension on the warps and otter pendants. The equations of forces were derived and substituted into the governing equations of 6 degrees of freedom motion, then the second order of differential equations to the otter boards were established. For the stable numerical integration of this system, Backward Euler one of implicit methods was used. From the results of the numerical calculation, graphic simulation was carried out. The simulations were conducted for 3 types of otter boards having same area with different aspect ratio(${\lambda}=0.5,\;1.0,\;1.5$). The tested gear was mid-water trawl and the towing speed was 4k't. The length of warp was 350m and all conditions were same to each otter board. The results of this study are like this; First, the otter boards of ${\lambda}=1.0$ showed the longest spread distance, and the ${\lambda}=0.5$ showed the shorted spread distance. Second, the otter boards of ${\lambda}=1.0$ and 1.5 showed the upright at the towing speed of 4k't, but the one of ${\lambda}=0.5$ heeled outside. Third, the yawing angles of three otter boards were similar after 100 seconds with the small oscillation. Fourth, it was revealed that the net height and width are affected by the characteristics of otter boards such as the lift coefficient.

Evaluation of Observation Environment for Weather Stations Located in Metropolitan Areas (GIS 자료를 활용한 대도시 지역 기상관측소 관측환경 평가)

  • Yang, Ho-Jin;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.193-203
    • /
    • 2015
  • In this study, effects of buildings and topography on observation environment of weather stations located on mountainous terrain in metropolitan areas are investigated using a computational fluid dynamics (CFD) model. In order to investigate the characteristics of flow pattern around the weather stations, geographic information system (GIS) data are used to construct surface boundary input data of the CFD model. In order to evaluate effects of buildings and topography on wind speed and direction at three weather stations located in Deajeon, Busan, and Gwangju., target areas around the weather stations are selected and 16 cases with different inflow directions for each target area are considered. The simulated wind speed and direction at the weather stations are compared with those of inflow. As a whole, wind speed at the weather stations decreases due to drag effects of the buildings and topography in the upwind regions. This study shows that GIS data and the CFD model are successfully applicable to evaluation of observation environment for weather stations.

Nonlinear Dynamic Behaviors of Offshore Guyed Towers (해양구조물 Guyed Tower의 비선형 동적거동)

  • Park, Woo-Sun;Pyen, Chong-Kun;Park, Young-Suk
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.3
    • /
    • pp.126-136
    • /
    • 1991
  • This study is concerned with the nonlinear dynamic behaviors of guyed towers for wave loadings. In order to analyze the nonlinear responses of guyed towers efficiently, the main tower is modeled as an equivalent stick, the guyline system is idealized as a spring with nonlinear stiffness in the horizontal direction. and the pile foundation system is represented as a linear spring in the rotational direction. The wave forces on the main tower are evaluated by using Morison's equation. In order to consider adequately the nonlinearities of the guying system and drag forces due to fluid viscosity. the analyses are performed in the time domain. The mode superposition method is adopted for solving the nonlinear equation of motion efficiently. which is based on the Newmark integration scheme. Numerical analyses are carried out to investigate the sensitivity of two major design parameters for guyed towers. i.e., the clump weight conditions and the base renditions of the tower.

  • PDF

Motion of Charged Micro-particle Immersed in Liquid Crystal Controlled by In-plane Field for Electro Paper Display

  • Baik, In-Su;Choi, Ju-Hwan;Jung, Byoung-Sun;Jeon, Sang-Youn;Song, Eun-Kyoung;Lee, Seung-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.30-35
    • /
    • 2006
  • We have studied the motion of charged micro-particles that are immersed in a nematic liquid crystal (LC) and controlled by in-plane field. The LC is an anisotropic liquid such that the viscosity of the LC depends on flow direction, phase of the LC, and temperature, which affects the motion of the charged particles under the influence of electric field. This study shows that the motion of charged particles mainly depends on the applied voltage and the LC phase, but does not show any significant influence from the initial alignment of LC, although one may expect directional difference in drag force due to interaction between LC and particle. The viscosity changes due to temperature variations in nematic phase also show no signification influence on particle velocity when compared to the effect from varying in-plane field strength.

Numerical Analysis of Relative Orbit Control Strategy for CANYVAL-X Mission

  • Lee, Youngro;Park, Sang-Young;Park, Jae-Pil;Song, Youngbum
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.235-248
    • /
    • 2019
  • This paper suggests a relative orbit control strategy for the CubeSat Astronomy by NASA and Yonsei using Virtual Telescope Alignment eXperiment (CANYVAL-X) mission whose main goal is to demonstrate an essential technique, which is an arrangement among two satellites and a specific celestial object, referred to as inertial alignment, for a next-generation virtual space telescope. The inertial alignment system is a relative orbit control system and has requirements for the relative state. Through the proposed orbit control strategy, consisting of separation, proximity keeping, and reconfiguration, the requirements will be satisfied. The separation direction of the two CubeSats with respect to the orbital plane is decided to provide advantageous initial condition to the orbit controller. Proximity keeping is accomplished by differential atmospheric drag control (DADC), which generates acceleration by changing the spacecraft's effective cross section via attitude control rather than consuming propellant. Reconfiguration is performed to meet the requirements after proximity keeping. Numerical simulations show that the requirements can be satisfied by the relative orbit control strategy. Furthermore, through numerical simulations, it is demonstrated that the inertial alignment can be achieved. A beacon signal had been received for several months after the launch; however, we have lost the signal at present.