• Title/Summary/Keyword: Draft Control

검색결과 150건 처리시간 0.027초

The Strategy Design of Control Logic for Ultra Super-Critical Power Plant Boiler (초초임계압 발전소 보일러 제어전략 설계)

  • Park, Doo-Yong;Kim, Byung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2008년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.223-224
    • /
    • 2008
  • 초초임계압 화력발전 제어계통 설계와 관련하여 보일러 제어시스템의 기본 요건인 제어전략을 구현하기 위해 현재 표준화력 500MW 제어시스템과 제어로직을 기반으로 1000MW급에서 필요로 하는 새로운 구조의 제어에 요구되는 제어전략에 대해 각종 제어 운전 모드의 구성과 각 운전 모드에서의 제어전략을 개발하고 있다. 최신제어시스템에서 중요하게 취급되는 자동 플랜트 제어(Automatic Plant Control, APE)의 각종 제어전략 구성에 중점을 두고 있으며 Unit Master Control, Boiler Master Control, Turbine blaster Control, Throttle Pressure Control, Fuel/Air Master Control, Forced Draft Fan Control, Induced Draft Fan Control, Primary Air Fan, Feed Water Master Control, Super Heater/Reheater Steam Temp Control 등의 제어전략을 논하고, 실제 프로세스 응단특성 파악을 위해 국내 신규발전소를 방문하여 수집한 프로세스 응답시험 결과와 특성을 분석하고 USC에 적용하기위한 보일러 제어전략에 대해 논하고자 한다.

  • PDF

Draft Genome Sequence of Aureobasidium pullulans Strain MHAU2101, a Biological Control Agent against Fire Blight from Korea

  • Lin He;Huan Luo;Mi-Hyun Lee;Jun Myoung Yu
    • Microbiology and Biotechnology Letters
    • /
    • 제51권4호
    • /
    • pp.538-541
    • /
    • 2023
  • In this study, we present the draft genome of Aureobasidium pullulans strain MHAU2101, which is the first strain to effectively control fire blight caused by Erwinia amylovora in Korea. The genome of strain MHAU2101 was composed of 28,669,322 base pairs, with a C+G content of 50.4%. The assembly comprised 17 contigs and had 99.22% completeness. The results of this study will be a valuable resource for future research on the biocontrol mechanism of A. pullulans strain MHAU2101.

Evaluation of Capture Efficiencies of Push-Pull Hood Systems by Trace Gas Method under the Presence of Some Cross-draft (방해기류 존재시 추적자 가스법을 이용한 푸쉬풀 후드 효율 평가)

  • Kim, Tae-Hyeung;Ha, Hyun-Chul;Kang, Ho-Gyung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • 제16권3호
    • /
    • pp.290-301
    • /
    • 2006
  • A push pull hood system is frequently applied to control contaminants evaporated from an open surface tank. Efficiency of push pull hood system is affected by various parameters, such as, cross draft, vessel shapes, tank surface area, liquid temperature. A previous work assisted by flow visualization technique qualitatively showed that a strong cross draft blown from the pull hood to push slot could destroy a stable wall-jet on the surface of tank, resulting in the abrupt escape of smoke from the surface. In this study, the tracer gas method was applied to determine the effect of cross-draft on the capture efficiency qualitatively. A new concept of capture efficiency was introduced, that is, linear efficiency. This can be determined by measuring the mass of tracer gas in the duct of pull hood while the linear tracer source is in between push slot and pull hood. By traversing the linear tracer source from the push slot to the pull hood, it can be found where the contaminant is escaped from the tank. Total capture efficiency can be determined by averaging the linear efficiencies. Under the condition of cross-draft velocities of 0, 0.4, 0.75, 1.05 and 1.47m/s, total capture efficiencies were measured as 97.6, 95.4, 94.6, 92.7 and 70.5% respectively. The abrupt reduction of efficiency with cross-draft velocity of 1.47m/s was due to the destruction of tank surface wall-jet by the counter-current cross-draft. The same phenomenon was observed in the previous flow visualization study. As an alternative to overcome this abrupt efficiency drop, the 20% increase of hood flow rates was tested, resulting in 20% efficiency increase.

Draft Genome Sequence of a Chitinase-producing Biocontrol Bacterium Serratia sp. C-1

  • Park, Seur Kee;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • 제21권3호
    • /
    • pp.222-226
    • /
    • 2015
  • The chitinase-producing bacterial strain C-1 is one of the key chitinase-producing biocontrol agents used for effective bioformulations for biological control. These bioformulations are mixed cultures of various chitinolytic bacteria. However, the precise identification, biocontrol activity, and the underlying mechanisms of the strain C-1 have not been investigated so far. Therefore, we evaluated in planta biocontrol efficacies of C-1 and determined the draft genome sequence of the strain in this study. The bacterial C-1 strain was identified as a novel Serratia sp. by a phylogenic analysis of its 16S rRNA sequence. The Serratia sp. C-1 bacterial cultures showed strong in planta biocontrol efficacies against some major phytopathogenic fungal diseases. The draft genome sequence of Serratia sp. C-1 indicated that the C-1 strain is a novel strain harboring a subset of genes that may be involved in its biocontrol activities.

Electronic-Hydraulic Hitch Control System for Agricultural Tractors (III) -Computer Simulation- (트랙터의 전자 유압식 히치 제어 시스템에 관한 연구 (III) -컴퓨터 시뮬레이션-)

  • Kim, K.Y.;Ryu, K.H.;Yoo, S.N.
    • Journal of Biosystems Engineering
    • /
    • 제15권4호
    • /
    • pp.290-297
    • /
    • 1990
  • The purposes of this study were to perform theoretical analysis of an electronic-hydraulic hitch control system for position and draft control of tractor implements and to investigate the performance of the control system through computer simulation. Computer simulation models which could predict the responses of the system to the step and sinusoidal inputs in position and draft controls were developed using the simulation package "TUTSIM". The effects of control mode, hydraulic flow rate, deadband, and proportional constant on control performance of the system were investigated. The simulated results were compard with the experimental ones to verify the simulation models. The simulation models appeared to be a useful means for the analysis and the design of the electronic-hydraulic hitch control system.

  • PDF

Regulation on Weed Control in International Basic Standards on Organic Agriculture (국제유기농업 기본규약상의 잡초방제 규정)

  • 손상목;채제천;김영호
    • Korean Journal of Organic Agriculture
    • /
    • 제6권2호
    • /
    • pp.81-106
    • /
    • 1998
  • This study aims to point out what is the basic idea and principle of weed control in or-ganic farming. The korean organic agriculture gets a point in dispute on weed control, be-cause 1) they do not practice the Basic Standard of IFOAM and FAO/WHO Codex Guidelines(draft), and 2) Korean organic farming is defined quite differently from internationally recognized core aspects for organic agriculture. Organic farming, in Korea, is taken to mean just the replacement of chemical fertilizer by organic manure and a-voidance of agricultural chemicals without practicing on rotation, cropping system and so on. As a consequence, organic farmers in Korea are suffering from hard labor to control the weed. In the paper it is discussed on organical weed control method which are required in the Basic Standard of IFOAM and guidelined in the Organic Production Principles of FAO/WHO Codex draft, and furthermore the single or combination effect of those method are also discussed. In conclusion it is suggest the necessity, purpose, and effect of the introduction of the basic stan-dard to korean organic agriculture including organical weed control.

  • PDF

A Simulation to Find Rotation Efficiency according to the Draft Changes of Waterwheel in Open Rectangular Channel (사각형 개수로에서의 수차 흘수 변화에 따른 회전 효율 파악을 위한 시뮬레이션)

  • Lee, Kyong-Ho;Park, Hee-Wan
    • Journal of the Korea Society of Computer and Information
    • /
    • 제18권4호
    • /
    • pp.113-121
    • /
    • 2013
  • In this paper, simulations were carried out to determine the efficiency of the rotation efficiency according to the draft of waterwheel in open rectangular channel. In the small hydroelectric generators to get the highest efficiency of waterwheel is very important. But the presence of various elements(free water surface flow, non-uniform velocity distribution because of the waterways wall friction etc) makes it difficult to create a mathematical formula. In this paper, we made a scale model and perform a physical simulation where the draft, gradient and flux is variable. Scale modelling with 10-step draft, 3-step gradients and 2-step flux, as well were constructed then computerized automatic experimental system were configured to acquire the rotational efficiency vs. draft of itself. Rotational efficiency is analyzed as for the draft of waterwheel using the acquired data by varying the gradient and flux of canal. Reviewing the analyzed data, it is confirmed that phenomena of efficiency shown at previous and present experiment is similar and revealed that computerized system shows more sophisticated numerical figures.

A Study on Air and Gas System of Coal Fired Power Plant (석탄화력발전소의 공기 및 가스시스템 모델에 관한 연구)

  • Jung, Hwan-Joo;Kim, Tae-Hyun;Ryoo, Young-Jae;Chang, Young-Hak;Moon, Chae-Joo
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.283-285
    • /
    • 2002
  • Boiler combustion systems are large, non-linear systems with numerous interactions between its component parts. In the analysis of such complex systems. dynamic simulation is recognized as a powerful method of keeping track of the myriad of interactions. This paper shows and discusses the developed analysis model, such as the forced draft fan the primary air fan, the furnace and burner system, pulverizer, air preheater and induced draft fan, etc. in accordance with BMCR condition of boiler using the Modular Modeling System(MMS) software.

  • PDF

Studies on the Computer Controlled Vibratory Tillage (진동경운(振動耕耘)의 컴퓨터제어(制御)에 관(關)한 연구(硏究))

  • Lee, Ki Myung
    • Current Research on Agriculture and Life Sciences
    • /
    • 제4권
    • /
    • pp.95-101
    • /
    • 1986
  • A computer-controlled automatic vibratory tillage test equipment which attained minimum draft and power was developed. Three control program modes were developed and tested with this equipment. A computer simulation investigated the control performances of the above modes with the following primary results. 1) All of the three control modes converged to the same steady state when the velocity ratio was kept constant. 2) The control mode in which the blade frequency was twice of the soil shearing frequency (frequency control mode) showed optimum control with minimum draft and power, and also had greatest velocity convergence. 3) Results of the simulations showed the frequency control mode to have achieved the best control performance. The fluctuation of the draft reduction was less than 10% at various cutting depths and soil moistures.

  • PDF

A Study On Prediction Model of Cutting Conditions for Draft Angle Control (마이크로금형 구배각 제어를 위한 절삭가공조건 예측모델에 관한 연구)

  • Cho, Ji-Hyun;Song, Byeong-Uk;Seo, Tae-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • 제21권3호
    • /
    • pp.387-393
    • /
    • 2012
  • It is very difficult to determine suitable cutting conditions in order to obtain accurate cutting profiles because machining errors caused by tool deflection depend upon cutting conditions. In this study the relationship between real cutting profiles (inclined shapes and machining errors) and cutting conditions was modeled in order to fabricate draft angle on micro molds. CCD (Central Composite Design) of DOE (Design Of Experiment) and RSM (Response Surface Method) were applied in order to model the relationship between cutting conditions and machining errors. In order to use CCD the range of radial depth of cut was chosen by $10-90{\mu}m$ and the range of feedrate was chosen by 200-300mm/min, and 9 points of cutting conditions were chosen inside determined ranges. Then, actual cutting processes were carried out as respect to 9 points of cutting conditions, draft angles and real cutting profiles were measured on cutting profiles, each response surface function was determined by conducting response surface analysis and the functions were represented by 3-dimensional graphs, contour lines and $101{\times}101$ matrices. Consequently it is possible to determine suitable cutting conditions in order to obtain arbitrary given draft angles and cutting profiles by using modeling. To validate proposed approach in this study suitable cutting conditions were determined by modeling in order to obtain arbitrary given draft angle and cutting profile, and actual cutting processes were carried out. About 95% of good agreement between predicted and measured values was obtained.